Vì MN // AB => tam giác CMN đồng dạng với tam giác CBA hay ΔNMC đồng dạng với ΔABC
Đáp án: C
Vì MN // AB => tam giác CMN đồng dạng với tam giác CBA hay ΔNMC đồng dạng với ΔABC
Đáp án: C
Chọn đúng (Đ), sai (S) điền vào chỗ chấm.
a) Nếu hai tam giác cân có các góc ở đỉnh bằng nhau thì đồng dạng với nhau. ...
b) Nếu Δ A B C ~ Δ D E F với tỉ số đồng dạng là 1/2 và Δ D E F ~ Δ M N P với tỉ số đồng dạng là 4/3 thì Δ M N P ~ Δ A B C với tỉ số đồng dạng là 2/3 ....
c) Trên cạnh AB, AC của ΔABC lấy 2 điểm I và K sao cho A I / A B = A K / B C t h ì I K / / B C . . . .
d) Hai tam giác đồng dạng thì bằng nhau....
Cho Tam Giác ABC , Â = 90 độ, AB = 3cm, AC =4cm. Trên cạnh AB, AC, BC lần lượt lấy trung điểm D,E,F. a) Tìm các cặp cạnh đường thẳng song song? Vì sao? b) Tam giác DFB có đồng dạng với tam giác ECF không? Vì Sao? c) Tính S ΔABC.
cho ΔABC có 3 góc nhọn (ab<ac),các đường cao ak,bd,ce cắt nhau tại h.gọi m,n lần lượt là giao điểm của de với ah và bc.CMR;
a) ΔABD đồng dạng ΔACE
b) CA.CD=CB.Ck
c) ΔKDC đồng dạng ΔABc
Cho ΔABC vuông tại A (AB<AC), đường cao AH (H∈BC). BD là phân giác của ∠ABC (D∈AC). Gọi I là giao điểm của AH và BD.
a. Chứng minh: ΔHBA đồng dạng ΔABC và ΔHBI đồng dạng ΔABD
b. Chứng minh: \(\frac{IA}{IH}=\frac{BC}{AB}\)
c. Đường thẳng vuông góc với BD tại B cắt đường thẳng AH tại M. CHứng minh: MA.IH = MH.IA
Giúp mình ý b,c với ạ
Cho ΔABC vuông tại A . Biết AB =15cm , AC =20cm . Kẻ Ah vuông góc với BC tại H .
a) Chứng minh ΔHBA Và ΔABC đồng dạng với nhau .
b) Vẽ tia phân giác của góc BAH cắt cạnh BH tại D . Tính độ dài các cạnh BD , DH .
c) Trên cạnh HC lấy điểm E sao cho HE=HA . Qua E vẽ đường thẳng vuông góc với cạnh BC cắt cạnh AC tại M , qua C vẽ đường thẳng vuông góc với cạnh BC cắt tia phân giác của góc MEC tại F . Chứng minh rằng 3 điểm H,M,F thẳng hàng.
Cho ΔABC vuông tại A, biết AB = 3cm, AC = 4cm, phân giác (D ∈ BC)
a) Tính độ dài BC, DB, DC
b) Kẻ DK vuông góc với AC. Chứng minh ΔABC đồng dạng với ΔKDC . Tính tỉ số đồng dạng
c) Gọi I là giao điểm các đường phân giác và G là trọng tâm của ΔABC . Chứng minh rằng IG // AC.
câu cuối và cho mình xin hình
Cho tam giác ABC vuông tại A (AB<AC), AH là đường cao. Gọi D, E lần lượt là trung điểm của các cạnh AB và BC. Gọi M là giao điểm của đường thẳng vuông góc với BC tại B và đường thẳng DE. Gọi N là giao điểm của CM và AH. Chứng minh rằng:
a) ΔABC đồng dạng ΔHBA
b) AH²=BH.CH
c) N là trung điểm của AH
cho ΔABC có AB=3cm; AC=4cm; BC=5cm và ΔABC đồng dạng ΔDEF với tỉ số đồng dạng là 2. vậy chu vi ΔDEF là
Cho tam giác ABC vuông tại A (AB<AC), AH là đường cao. Gọi D, E lần lượt là trung điểm của các cạnh AB và BC. Gọi M là giao điểm của đường thẳng vuông góc với BC tại B và đường thẳng DE. Gọi N là giao điểm của CM và AH. Chứng minh rằng:
a) ΔABC đồng dạng ΔHBA
b) AH²=BH.CH
c) N là trung điểm của AH
Cho ΔABC đồng dạng với ΔMNP. Biết AB = 5cm, BC = 6cm, MN = 10cm, MP = 5cm. Hãy chọn câu đúng:
A. NP = 12cm, AC = 2,5cm
B. NP = 2,5cm, AC = 12cm
C. NP = 5cm, AC = 10cm
D. NP = 10cm, AC = 5cm