Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(2;4), trọng tâm G ( 2 ; 2 3 ) . Biết rằng đỉnh B nằm trên đường thẳng d: x + y + 2 = 0 và đỉnh C có hình chiếu vuông góc trên d là điểm H(2;-4). Giả sử B(a;b). Tính giá trị của biểu thức P = a - 3b.
Cho tam giác ABC nội tiếp đường tròn (O) và M là một điểm bất kì trên (O). Gọi D, E, F lần lượt là hình chiếu vuông góc của M trên các đường thẳng AB, BC, CA. Chứng minh D, E, F thẳng hàng
Cho đường thẳng d: x - 2y - 3 = 0. Tọa độ hình chiếu vuông góc H của điểm M(0;1) trên đường d là:
A. H(-1;2)
B. H(5;1)
C. H(3;0)
D. H(1;-1)
Cho tam giác ABC có A(1; 2), B(–2; 6), C(9; 8).
a Tính . Cm tam giác ABC vuông tại A.
b Tìm tâm và bán kính đường tròn ngoại tiếp tam giác ABC.
c Tìm toạ độ trực tâm H và trọng tâm G của tam giác ABC.
d Tính chu vi, diện tích tam giác ABC.
e Tìm toạ độ điểm M trên Oy để B, M, A thẳng hàng.
f Tìm toạ độ điểm N trên Ox để tam giác ANC cân tại N.
g Tìm toạ độ điểm D để ABDC là hình chữ nhật.
h Tìm toạ độ điểm K trên Ox để AOKB là hình thang đáy AO.
Cho tam giác ABC cân tại A, M trung điểm BC, H là hình chiếu của M trên AC , E là trung điểm MH . Chứng minh AE vuông góc với BH
Cho tam giác ABC có A(1; -2; 3), B(0; 5; 6), C(1; 3; 2). Gọi H là hình chiếu vuông góc của A trên đường thẳng BC. Trong những khẳng định dưới đây, khẳng định nào sai?
A. Một vectơ pháp tuyến của mặt phẳng (ABC) là:
B. Một vectơ chỉ phương của đường thẳng AH là:
C. AH ⊥ BC
D. Các khẳng định trên không đồng thời đúng
Cho tam giác ABC nhọn(AB<AC) nội tiếp đường tròn nội tiếp đường tròn
tâm O
ĐỀ SỐ 2
Kẻ đường cao AH. Gọi M, N là hình chiếu vuông góc của H lên AB, AC. Kẻ NE
vuông góc với AH. Đường thẳng vuông góc với AC kẻ từ C cắt đường tròn tại I và
cắt tia AH tại D. Tia AH cắt đường tròn tại F
a) Chứng minh ABC+ACB=AIC và tứ giác DENC nội tiếp.
b) Chứng minh AM. AB = AN . AC.
c) Chứng minh tứ giác BFIC là hình thang cân.
d) Chứng minh tứ giác BMED nội tiếp .
Cho tam giác ABC , AB> AC ngoại tiếp đường tròn (I ) và nội tiếp đường tròn (O). Đường tròn (I ) tiếp xúc với các cạnh BC, CA, AB lần lượt tại D, E, F. Gọi H là hình chiếu vuông góc của D trên EF. Đường tròn ngoại tiếp tam giác AEF cắt đường tròn (O) tại K (K khác A).
a) Chứng minh HD là phân giác của góc BHC .
b) Chứng minh ba điểm I, H, K thẳng hàng.
Cho tam giác ABC cân tại A. Gọi AE là đường cao và F là hình chiếu của E lên cạnh AC, và D là trung điểm EF . Chứng minh AD vuông góc với EF.
Trong mặt phẳng Oxy, cho tam giác ABC vuông cân tại B. Điểm D nằm trên
cạnh BC, điểm E là hình chiếu vuông góc của D lên AC và điểm K(6;2) là trung điểm
của AD. Tìm tọa độ các đỉnh của tam giác ABC, biết phương trình đường
thẳng BE là x-2y-7=0 diện tích tam giác ABC bằng 18.