a: ΔABM=ΔACM
=>BM=CM
=> M là trung điểm của BC
b: ΔAMC=ΔAMB
=>góc MAC=góc MAB và AC=AB
=>AM là phân giác của góc BAC
AB=AC
MB=MC
=>AM là trung trực của BC
=>AM vuông góc BC
a: ΔABM=ΔACM
=>BM=CM
=> M là trung điểm của BC
b: ΔAMC=ΔAMB
=>góc MAC=góc MAB và AC=AB
=>AM là phân giác của góc BAC
AB=AC
MB=MC
=>AM là trung trực của BC
=>AM vuông góc BC
Tam giác ABC có AB = AC, M là trung điểm của BC. Chứng minh tam giác amb=tam gaics amc chứng minh am là tia phân giác của góc bac đương thẳng đi qua b vuông góc vói ba cắt đường thẳng am tại i chúng minh ci vuông góc với ca
Cho tam giác ABC có AB = AC và BC < AB. M là trung điểm của BC. Tam giác ABM = tam giác ACM, AM là tia phân giác của góc BAC (đã chứng minh). Trên cạnh AB lấy điểm N sao cho CB = CD, CN là tia phân giác của góc BCD, CN vuông góc với BD (đã chứng minh). Trên tia đối của tia CA lấy điểm E sao cho AD = CE. Chứng minh: BE - CE = 2BN.
Cho tam giác ABC có AB = AC và BC < AB. M là trung điểm của BC.
a. tam giác ABM = tam giác ACM, AM là tia phân giác của góc BAC.
b. Trên cạnh AB lấy điểm N sao cho CB = CD, CN là tia phân giác của góc BCD. Chứng minh: CN vuông góc với BD.
c. Trên tia đối của tia CA lấy điểm E sao cho AD = CE. Chứng minh: BE - CE = 2BN.
Cho tam giác ABC có AB= AC, AM là tia phân giác của góc BAC( M thuộc BC).
a) Chứng minh tam giác ABM= tam giác ACM
B) Ching minh: AM vuông góc với BC
Cho tam giác ABC có AB = AC. M là trung điểm của BC. Chứng minh:
a. Tam giác ABM = tam giác ACM, AM vuông góc với BC
b. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. Chứng minh: AB//CD
c. Cho ME vuông góc với AB (E thuộc AB), MF vuông góc CD (F thuộc CD). Chứng minh: M là trung điểm của EF.
Bài 4 (4,0 điểm): Cho tam giác ABC cân tại A. (AC > BC). Gọi M là trung điểm của BC.
a) Chứng minh: tam giác ABM = tam giác AMC và AM vuông góc với BC.
b) Gọi I là trung điểm của AC. Trên tia đối của tia IM lấy điểm D sao cho ID = IM. Chứng minh: AD = CM.
c) BD cắt AC, AM lần lượt tại G và E. Chứng minh: rAED = rMEB
và BC < 3AG
Cho tam giác ABC có AB<AC. AD là tia phân giác của góc BAC. trên cạnh AC lấy điểm M sao cho AM=AB.
a, Chứng minh tam giác ABD = tam giác AMD.
b, Gọi I là giao điểm của AD và BM. Chứng minh I là trung điểm BM và AI vuông góc với BM
c, Gọi K là trung điểm của AM, trên tia đối của tia KB lấy điểm P sao cho KB = KP. chứng minh MP // AB.
d, trên tia đối của tia MP lấy điểm E sao cho MP = ME. Chứng minh A, I, E thẳng hàng
giúp nhanh mik vs mik đang cần gấp ạ
Cho tam giác ABC. M là trung điểm của BC.
a, Chứng minh tam giác ABM = tam giác ACM
b, Chứng minh AM là phân giác của góc BAC và AM vuông BC
c, Lấy D là 1 điểm bất kỳ trên AM. Chứng minh DB = DC
d, Lấy điểm H thuộc AB, K thuộc AC sao cho BH = CK. Chứng minh HK // BC