Xét Δ ABM và Δ ACM có:
AB = AC (gt)
AM là cạnh chung
Góc BAM = góc CAM (AM là tia phân giác góc BAC)
⇒ Δ ABM = Δ ACM (c_g_c)
Xét Δ ABM và Δ ACM có:
AB = AC (gt)
AM là cạnh chung
Góc BAM = góc CAM (AM là tia phân giác góc BAC)
⇒ Δ ABM = Δ ACM (c_g_c)
Cho tam giác ABC có AB = AC và BC < AB. M là trung điểm của BC. Tam giác ABM = tam giác ACM, AM là tia phân giác của góc BAC (đã chứng minh). Trên cạnh AB lấy điểm N sao cho CB = CD, CN là tia phân giác của góc BCD, CN vuông góc với BD (đã chứng minh). Trên tia đối của tia CA lấy điểm E sao cho AD = CE. Chứng minh: BE - CE = 2BN.
Cho tam giác ABC. M là trung điểm của BC.
a, Chứng minh tam giác ABM = tam giác ACM
b, Chứng minh AM là phân giác của góc BAC và AM vuông BC
c, Lấy D là 1 điểm bất kỳ trên AM. Chứng minh DB = DC
d, Lấy điểm H thuộc AB, K thuộc AC sao cho BH = CK. Chứng minh HK // BC
Cho tam giác ABC có AB=AC , M là trung điểm của BC
a) Chứng minh tam giác ABM= tam giác ACM
b) Chứng minh AM vuông góc với BC
c) Gọi I là trung điểm của AM , trên tia BI lấy điểm H sao cho BI=IH. Chứng minh AH song song với BC
d) Qua M kẻ đường thẳng song song với AC cắt đường thẳng AH tại K . Chứng minh A là trung điểm của HK
( trình bày giúp mình câu c,d thôi ạ )
Câu 5. Cho tam giác ABC vuông tại B (AB < AC) có AM là tia phân giác góc A (M ∈ BC). Trên cạnh AC lấy điểm N sao cho AB = AN.
a) Chứng minh ∆ABM = ∆ANM.
b) Chứng minh góc BAC= góc CMN
Cho tam giác ABC có AB = AC và BC < AB. M là trung điểm của BC.
a. tam giác ABM = tam giác ACM, AM là tia phân giác của góc BAC.
b. Trên cạnh AB lấy điểm N sao cho CB = CD, CN là tia phân giác của góc BCD. Chứng minh: CN vuông góc với BD.
c. Trên tia đối của tia CA lấy điểm E sao cho AD = CE. Chứng minh: BE - CE = 2BN.
Tam giác ABC có AB = AC, M là trung điểm của BC. Chứng minh tam giác amb=tam gaics amc chứng minh am là tia phân giác của góc bac đương thẳng đi qua b vuông góc vói ba cắt đường thẳng am tại i chúng minh ci vuông góc với ca
Cho tam giác ABC có AB = AC. M là trung điểm của BC. Chứng minh:
a. Tam giác ABM = tam giác ACM, AM vuông góc với BC
b. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. Chứng minh: AB//CD
c. Cho ME vuông góc với AB (E thuộc AB), MF vuông góc CD (F thuộc CD). Chứng minh: M là trung điểm của EF.
Cho tam giác ABC và điểm M thuộc cạnh BC thỏa mãn tam giác AMB=tam giác AMC. Chứng minh rằng:
a)M là trung điểm của BC
b)Tia AM là phân giác của góc BAC và AM Vuông góc BC
Cho tam giác ABC có AB=AC , gọi M là trung điểm của cạnh BC
a)Chứng minh tam giác ABM và tam giác ACM bằng nhau
b)Chứng minh AM vuông góc với BC