#)Giải :
Ta có : \(\hept{\begin{cases}\widehat{DIB}=\widehat{IBC}\left(slt\right)\\\widehat{DBI}=\widehat{IBC}\left(p/gBI\right)\end{cases}\Rightarrow\widehat{DIB}=\widehat{DBI}}\)
\(\Rightarrow\Delta BID\) cân tại D \(\Rightarrow BI=ID\) (1)
Lại có : \(\hept{\begin{cases}\widehat{EIC}=\widehat{BCI}\left(slt\right)\\\widehat{ECI}=\widehat{BCI\left(p/gCI\right)}\end{cases}\Rightarrow\widehat{EIC}=\widehat{ECI}}\)
\(\Rightarrow\Delta CIE\) cân tại E \(\Rightarrow IE=EC\) (2)
Từ (1) và (2) \(\Rightarrowđpcm\)
cm: Ta có: OD // BC => \(\widehat{O_1}=\widehat{B_2}\) (so le trong) mà \(\widehat{B_1}=\widehat{B_2}\) (gt)
=> \(\widehat{O_1}=\widehat{B_1}\) => t/giác OBD cân tại D => DB = DO
OE // BC => \(\widehat{O_2}=\widehat{C_2}\)(so le trong) mà \(\widehat{C_1}=\widehat{C_2}\) (gt)
=> \(\widehat{O_2}=\widehat{C_1}\) => t/giác OEC cân tại E => OE = EC
Ta lại có:DE = OD + DE (O \(\in\)DE)
hay DE = DB + EC (đpcm)