Cho tam giác ABC, phân giác BN, gọi O là tâm đường tròn nội tiếp. Từ A kẻ 1 tia vuông góc với BN cắt BC tại H. Chứng minh rằng A, O, H, C nằm trên 1 đường tròn.
Cho tam giác ABC nội tiếp đường tròn (O;R).Quá tâm O vẽ các đường thẳng vuông góc với BC,AC lânf lượt tại H,K.Các đường thẳng này lần lượt cắt đường tròn tại M,N;AM cắt BN tại I
1.chứng minh 4 điểmO,H,C,K cùng thuộc một đường tròn
2.chứng minh MN là trung trực của IC
3.chứng minh M là tâm đường tròn ngoại tiếp tam giác IBC.Tính bán kính đường tròn ngoại tiếp tam giác IBC theo R khi góc BAC=120°
Bài 1. Cho 2 đường tròn (O) và (O') cắt nhau tại A, B. Kẻ đường kính AC của (O) cắt đường tròn (O') tại F. Kẻ đường kính AE của (O') cắt đường trong (O) tại G. CMR:
a. GFEC là tứ giác nội tiếp
b. GC, FE, AB đồng quy
Bài 2. Cho tam giác ABC có 3 góc nhọn. Đường tròn (O;R) có đường kính BC cắt AB, AC lần lượt tại F và E; BE cắt CF tại H.
a. CMR tứ giác AFHE nội tiếp. Từ đó, xác định tâm I của đường tròn ngoại tiếp tứ giác này.
b.Tia AH cắt BC tại D. CMR HE.HB bằng 2.HD.HI
c. CMR 4 điểm D, E, I, F cùng nằm trên 1 đường tròn.
Cho tam giác ABC có 3 góc nhọn, nội tiếp đường tròn tâm O và AB<AC. Vẽ đường kính AD của đường tròn (O). Kẻ BE và CF vuông góc với AD( E,F thuộc AD). Kẻ AH vuông góc với AC(H thuộc BC).
a) Chứng minh 4 điểm A,B,H,E cùng nằm trên một đường tròn và tam giác ABH đồng dạng với tam giác ADC.
b) Chứng minh HE // CD
c) Gọi M là trung điểm của BC. Chuwngd minh ME=MF.
Cho tam giác ABC nội tiếp đường tròn (O;R).Quá tâm O vẽ các đường thẳng vuông góc vớiBC,AC lần lượt tại H,K.Các đường thẳng này lần lượt cắt đường tròn tại M và N,AM cắt BN tại I
1.chứng minh O,H,C,K cùng thuộc một đường tròn
2.chứng minh MN là trung trực của IC
3.chứng minh M là tâm đường tròn ngoại tiếp tam giác IBC.Tính bán kính đường tròn ngoại tiếp IBC theo R khi góc BAC =120°
1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC
2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn đường kính MB
3.cho nửa đường tròn tâm O đường kính AB, C thuộc nửa đường tròn.vẽ CH vuông góc với AB(H thuộc AB),M là trung điểm CH,BM cắt tiếp tuyến Ax của O tại P .chứng minh PC là tiếp tuyến của (O)
4.cho đường tròn O đường kính AB, M là một điểm trên OB.đường thẳng qua M vuông góc với AB tại M cắt O tại C và D. AC cắt BD tại P,AD cắt BC tại Q,AB cắt PQ tai I chứng minh IC,ID là tiếp tuyến của (O)
5.cho tam giác ABC nội tiếp đường tròn đường kính BC (AB<AC).T là một điểm thuộc OC.đường thẳng qua T vuông góc với BC cắt AC tại H và cắt tiếp tuyến tại A của O tại P.BH cắt (O) tại D. chứng minh PD là tiếp tuyến của O
6.cho tam giác ABC nội tiếp đường tròn O. phân giác góc BAC cắt BC tại D và cắt (O) tại M chứng minh BM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD
Cho tam giác ABC, vẽ đường tròn (O) đường kinh BC cắt AB tại M và cắt AC tại N. BN cắt CM tại H a) Chứng minh tứ giác AMHN nội tiếp được một đường tròn, b) Chứng minh HMBC = HB MN c) Kẻ AH cắt BC tại K, Chứng minh H là tâm đường tròn nội tiếp tam giác KMN
Cho đường tròn (O) đường kính AB=12cm, lấy C trên (O) sao cho góc CAB=30°. Tiếp tuyến tại A và C của (O) cắt nhaư ở D. DO cắt AC tại H, DB cắt (O) tại F.
a)Chứng minh: OD vuông góc AC tại H và DA^2=DH.DO
b) Chứng minh tứ giác BOHF nội tiếp
c) OD cắt (O) tại E(E cùng phía F có bờ AB). Chứng minh E là tâm đường tròn nội tiếp tam giác ABC và tính bán kính đường tròn nội tiếp tam giác DAC
Cho tam giác ABC nhọn ( AB < AC ) .Đường tròn tâm O có đường kính BC cắt AB và AC lần lượt tại E và D . Gọi H là giáo điểm của CE và BD .
a ) AH cắt BC tại F : CMR AF vuông góc với BC
b) kẻ HK ⊥ OA tại K .C/m A,D,K,E cùng thuộc 1 đường tròn