Cho tam giác ABC, phân giác BD. Đường trung trực của BD cắt AC tại E
a) chứng minh tam giác BED cân
b) Chứng minh tam giác EAB và EBC đồng dạng
c) Tính độ dài ED biết AD=4cm DC=5cm
♥Người lạ ơi! Giúp mình ba bài toán hình học lớp 8 này nha. Nhớ ghi cả cách làm chi tiết và vẽ cả hình vào đó. Cảm ơn người lạ nha.♥
Bài 1: Cho tam giác ABC (AB < AC). Tia phân giác góc A cắt BC ở K. Qua trung điểm M của BC kẻ một tia song song với AK cắt AD ở B, cắt AC ở E. Chứng minh BD = CE.
Bài 2: Cho tam giác ABC, kẻ phân giác BD. Đường trung trực của BD cắt AC tại E.
a) Chứng minh tam giác BED cân.
b) Chứng minh tam giác EAB đồng dạng với tam giác BEC.
c) Tính độ dài EB biết AD = 4 cm, BC = 5 cm.
Cho tam giác ABC vuông tại A, đường cao AH.
a, Chứng minh tam giác AHB đồng dạng tam giác CAB
b, Cho đường phân giác BD của tam giác ABC cắt AH tại E ( E thuộc AC ). Biết AB = 12cm; BC= 16cm. Tính SEBH/SDBA.
c, Chứng minh EA/EH = DC/DA
Cho tam giác ABC vuông tại A. Kẻ AH vuông góc BC. Trên tia AH lấy D sao cho H là trung điểm của AD. Gọi AB cắt CD tại E; BD cắt AC tại K. Chứng minh:
a) Tam giác ACD cân
b) Tam giác ABC = tam giác DBC và KD vuông góc CE
c) Tam giác CEK cân
d)CB vuông góc KE và AD//EK
Đề 3
cho tam giác ABC vuông tại A, có AB = 6cm, AC = 8cm. Đường phân giác của góc ABC cắt cạnh AC tại D. Từ C kẻ CE vuông góc với BD tại E. a) tình độ dài BC và tỉ số \(\frac{AD}{DC}\)
b) Chứng minh tam giác ABD đồng dạng với tam giác EBC. Từ đó suy ra BD . EC = AD . BC
c) Cm \(\frac{CD}{BC}\)= \(\frac{CE}{BE}\)
d) Gọi EH là đường cao của tam giác EBC. Cm: CH . CB = ED . EB
Cho tam giác ABC có ba góc nhọn, hai đường cao BD và CE của tam giác cắt nhau tại H (D thuộc AC, E thuộc AB)
a) Chứng minh rằng tam giác BHE đồng dạng với tam giác CHD
b) Chứng minh AB.AE = AC.AD
c) Chứng minh góc AED = góc ACB
cho tam giác abc đường phân giác bd đường trung trực của bd cắt ac tại e
a, chứng minh rằng tam giác bde cân
b, chứng minh rằng tam giác abe đồng dạng với tam giác bec
Bài 1 : Cho hình bình hành ABCD , điểm F nằm trên cạnh BC . Tia AF cắt BD và DC lần lượt ở E và G Chứng minh rằng :
a) Chứng minh tam giác BEF đồng dạng tam giác DEA
b) EG . EB = ED . EA
c) AE2 = EF . EG
Bài 2 : Cho tam giác nhọn ABC , các đường cao AD , BE , CF cắt nhau tại H .
a) Chứng minh tam giác AEB đồng dạng tam giác AFC và AF . AB = AE . AC
b) Chứng minh góc AEF = góc ABC
c) Cho AE = 3 cm , AB = 6 cm . Chứng minh rằng : Diện tích tam giác ABC bằng 4 lần diện tích tam giác AEF
Bài 3: Cho tam giác ABC vuông tại A , có AB = 3 cm , AC = 3 cm , AC = 4 cm , đường phân giác AD . Đường vuông góc với DC cắt AC ở E
a) Chứng minh tam giác ABC đồng dạng tamm giác DEC
b) Tính BC và BD
c) Tính AD
d) Tính diện tích tam giác ABC và diện tíc tứ giác ABDE
Cho tam giác ABC có ba góc nhọn, hai đường cao BD và CE của tam giác cắt nhau tại H ( D thuộc AC, E thuộc AB).
a) Chứng minh 2 tam giác BHE và CHD đồng dạng
b) Chứng minh AB.AE=AC.AD
c) Chứng minh góc AED = góc ACB