https://vi.wikipedia.org/wiki/%C4%90%E1%BB%8Bnh_l%C3%BD_Ceva
Theo định lý Ceva ta có:
\(\frac{SinABM}{SinMBC}.\frac{SinBAD}{SinDAC}.\frac{SinACH}{SinHCB}=1\)
Vì BAD = DAC nên \(\frac{SinACH}{SinHCB}.\frac{SinABM}{SinMBC}=1\)
SinACH = CosA; SinHCB = CosB
=> .\(CosA.\frac{SinABM}{SinCBM}=CosB\) (1)
Diện tích tam giác ABM là: \(\frac{1}{2}SinABM.BM.AB\)
Diện tích tam giác BMC là: \(\frac{1}{2}SinMBC.BM.BC\)
Mà diện tích 2 tam giác này bằng nhau nên \(\frac{SinABM}{SinMBC}=\frac{AB}{BC}\)
(1) => \(CosA\frac{AB}{BC}=CosB\)
=> AB.CosA = BC.CosB