cho tam giác abc có 3 góc nhọn nội tiếp đường tròn tâm o.các đường cao ad, be, cr cắt đường tròn tâm o tại m,n,k. CMR: am/ad+bn/be+ck/cf=4
Cho tam giác ABC nội tiếp (O), các đường cao AD,BE,CF cắt (O) tại M,N,K.
CMR: \(\frac{AM}{AD}+\frac{BN}{BE}+\frac{CK}{CF}=4\)
Cho tam giác nhọn ABC nội tiếp đường tròn O đường cao AD,BE,CF cắt đường tròn theo thứ tự ở M , N , K . CMR : AM/AD + BN/BE + CK/CF =4
Cho tam giác ABC nội tiếp (O), các đường cao AD,BE,CF cắt (O) theo thứ tự M,N,K. CMR
\(\frac{AM}{AD}+\frac{BN}{BE}+\frac{CK}{CF}=4\)
cho tam giác ABC có 3 góc đều nhọn nội tiếp đường tròn tâm O.các đường cao AD,BE,CF cắt nhau tại H.và cắt đường tròn tại các điểm theo thứ tự là :M,N,P. chứng minh: AM/AD + BN/BE + CP/CF = 4
Cho tam giác ABC nội tiếp đường tròn O . Ba đường cao AD , BE,,CF cắt nhau tại H . kéo dài AO cắt đường tròn tâm O tại M ,AD cắt đường tròn tâm O tại K . cmr
a) MK//BC
b) DH=DK
c) Gọi I là trung điểm của BC. Cmr H,M,I thẳng hàng
d) AD/HD+BE/HE+CF/HF≥9
Cho tam giác ABC nội tiếp đường tròn (O), các đường cao AD, BE, CF cắt nhau tại H và lần lượt cắt đường tròn tại M, N, P. Chứng minh rằng:
1) Tứ giác BFEC và AEDB nội tiếp.
2) AE.AC = AF.AB.
3) Chứng minh H là tâm đường tròn nội tiếp tam giác EFD.
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn(O).
Các đường cao AD, BE, CF cắt nhau tại H và cắt đường tròn (O) lần lượt tại M, N, P. CMR:
a/. Các tứ giác AEHF, BCEF nội tiếp
b/ AD.BC = BE AC
c/. CMR BHM cân
cho tam giác ABC ( có 3 góc nhọn) nội tiếp đường tròn(O;R). Các đường cao AD,BE,CF cắt nhau tại H. Kéo dài AO cắt đường tròn tại K. Gôi G là trọng tâm của ABC
a,Chứng minh SAHG=2SAGO
b,Chứng minh \(\frac{HD}{AD}+\frac{HE}{BE}+\frac{HF}{CF}=1\)