cho tam giác ABC nội tiếp đường tron(O;R).qua A kẻ tiếp tuyến xy.từ B vẽ BM song song xy (M thuộc AC)
1. CM rằng AB^2 bằng AM.AC
2.vẽ tiếp tuyến B cắt xy tại K.CM tứ giác KAOB nội tiếp đường tròn.xác định tâm T của đường tròn ngoại tiếp tứ giác KAOB
3.đoạn KC cắt đường tròn (O )tại E .gọi I là trung điểm của BC.CM 5 điểm KAOIB cùng thuộc một đường tròn
Cho tam giác ABC nhọn (AB< AC) nội tiếp đường tròn (O;R). Hai đường cao BE và CD cắt nhau tại H
A) cm Tứ giác BDEC nội tiếp đường tròn tâm I, xác định I
B) Kẻ đường kính AK. CM: BHCK là hình bình hành và ba điểm H,I,K thẳng hàng
c) qua A vẽ đường thẳng xy song song vs DE. cm xy là tiếp tuyến của đường tròn (O)
D) cm rằng nếu điểm M nằm giữa B,C vs tổng khoảng cách từ M đến AB và AC bằng khoảng cách từ B đến AC thì tam giác ABC là tam giác cân
Cho tam giác ABC có 3 góc nhọn (AB<AC) nội tiếp đường tròn (O;R). Vẽ đường kính AD, tiếp tuyến với đường tròn (O;R) tại D cắt BC tại E. Vẽ OH vuông góc với BC
a/ Chứng minh tứ giác OHDE nội tiếp
b/ Chứng minh ED^2=EC.EB
c/ Từ C vẽ đường thẳng song song với EO cắt AD tại I. Chứng minh HI song song với AB
d/ Qua D vẽ đường thẳng song song với EO cắt AB và AC lần lượt tại M và N. Chứng minh DM=DN
Cho tam giác ABC có 3 góc nhọn (AB<AC) nội tiếp đường tròn (O;R). Vẽ đường kính AD, tiếp tuyến với đường tròn (O;R) tại D cắt BC tại E. Vẽ OH vuông góc với BC
a/ Chứng minh tứ giác OHDE nội tiếp
b/ Chứng minh ED^2=EC.EB
c/ Từ C vẽ đường thẳng song song với EO cắt AD tại I. Chứng minh HI song song với AB
d/ Qua D vẽ đường thẳng song song với EO cắt AB và AC lần lượt tại M nà N. Chứng minh DM=DN
Cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn (O) . Tiếp tuyến tại A của (O) cắt đường thẳng BC tại M. Vẽ đường cao BF của tam giác ABC. Từ F kẻ đường thẳng song song với MA cắt AB tại E.
a) chứng minh rằng MA^2=MB.MC suy ra MC/MB=AC^2/AB^2
b) CE cắt BF tại H. Chứng minh tứ giác BEFC nội tiếp, suy ra AH vuông góc BC tại D
c) gọi I là trung điểm BC. Chứng minh bốn điểm E,F,D,I cùng nằm trên một đường tròn
d) từ H vẽ đường thẳng vuông góc với HI cắt AB,AC theo thứ tứ tại P,Q. Chứng minh H là trung điểm PQ
Cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn (O) . Tiếp tuyến tại A của (O) cắt đường thẳng BC tại M. Vẽ đường cao BF của tam giác ABC. Từ F kẻ đường thẳng song song với MA cắt AB tại E.
a) chứng minh rằng MA^2=MB.MC suy ra MC/MB=AC^2/AB^2
b) CE cắt BF tại H. Chứng minh tứ giác BEFC nội tiếp, suy ra AH vuông góc BC tại D
c) gọi I là trung điểm BC. Chứng minh bốn điểm E,F,D,I cùng nằm trên một đường tròn
d) từ H vẽ đường thẳng vuông góc với HI cắt AB,AC theo thứ tứ tại P,Q. Chứng minh H là trung điểm PQ
Cho tam giác ABC nội tiếp đường tròn(O) ;phân giác AD .Vẽ đường tròn (O') đi qua A,D và tiếp xúc với (O) .Gọi M,N là giao của AB,AC với (O'). Chứng minh rằng:
a)MN song song với BC
b)BC là tiếp tuyến của (O')
cho tam giác nhọn ABC có AB < AC nội tiếp đường tròn tâm O. Kẻ các tiếp tuyến tại B, tại C của đường tròn tâm O, 2 tiếp tuyến cắt nhau tại D
a/ CM: DBOC là tứ giác nội tiếp
b/ Qua D kẻ đường thẳng song song với AB cắt (O) tại E và F ( E thuộc cung nhỏ BC) EF cắt AC tại H, Chứng minh OH vuông góc với DF
c/EF cắt BC tại I. Chứng minh ID.IH=IE.IF
ko cần vẽ hình và giải câu a
cho tam giác ABC nhọn nội tiếp đường tròn tâm O,AB<AC,hai đường cao BN,CM cắt nhau tại H.
a,Chứng minh tứ giác BMNC nội tiếp.
b,kẻ đường thẳng xy là tiếp tuyến của (O) tại A,chứng minh xy song song với MN
c,chứng minh MN=BC.cos A
d,giả sử góc A bằng 60 độ.Chứng minh OH=AC-AB