Cho tam giác ABC có AB = 3,59; BC = 4,90; CA = 5,74, đường cao BH. Trên cạnh BC lấy điểm M sao cho MC = 2MB. Gọi I là giao điểm của AM và BH, r là bán kính đường tròn nội tiếp tam giác IBM, R là bán kính đường tròn ngoại tiếp tam giác IBM. Tính giá trị của r + R (Làm trên kết quả đến 3 chữ số ở phần thập phân)
Giải giúp tớ với, cần câu trả lời gấp ạk, thanks
1 / Cho tam giác ABC, góc A=90 độ, AC=3AB. D, E thuộc AC sao cho AD=DE=EC.
a/ Gọi M là điểm đối xứng với B qua D. Chứng minh rằng ABCM là tứ giác nội tiếp
b/ Chứng minh rằng góc ACB+ góc AEB= 45 độ
2/ Cho đường tròn tâm O bán kính R=3cm và một điểm S cố định bên ngoài đường tròn sao cho SO=5cm. Vẽ tiếp tuyến SA với A là tiếp điểm và cát tuyến SCB không qua tâm sao cho O nằm trong góc ASB ( C nằm giữa S và B ). Gọi H là trung điểm của CB
a) Chứng minh rằng tứ giác SAOH nội tiếp một đường tròn
b) Tính chu vi và diện tích của đường tròn ngoại tiếp tứ giác SAOH
c) Tính tích SC.SB
3/ Cho tam giác ABC nội tiếp đường tròn tâm O đường kính AB=2R. Lấy H là trung điểm của dây BC. Tia OH cắt đường tròn tại D, AD lần lượt cắt tiếp tuyến Bx của đường tròn tại E và F
a) Chứng minh AD là tia phân giác của góc CAB
b) Chứng minh tứ giác ECDF là tứ giác nội tiếp
c) Cho CD= R=căn10cm. Tính diện tích của hình viên phân giới hạn bởi cung CDB với dây CB
4/ Cho tam giác ABC cân ở A nội tiếp đường tròn O đường kính I. Gọi E là trung điểm của AB. K là trung điểm của OI. Chứng minh rằng AEKC là tứ giác nội tiếp
5/Cho tam giác ABC. Các đường phân giác trong của B, C cắt nhau tại S, các đường phân giác ngoài của B và C cắt nhau tại E. Chứng minh rằng BSCE là 1 tứ giác nội tiếp.
1)tính diện tích tam giác đều ABC ngoại tiếp đường tròn tâm I, bán kính 4/3 là
2)cho tam giác ABC có đọ dài 3 cạnh AB,AC,BC lần lượt là 6;8;10 nội tiếp đường tròn tâm (O), M là điểm chính giữa của cung AC nhỏ và I là giao của OM và AC.Độ dài IO=?
1. Cho 2 đường tròn (O;R) và (O';r) tiếp xúc ngoài tại A. Kẻ tiếp tuyến chung ngoài BC ($B\in (O), C\in (O')$)
a. Tính góc BAC
b. Tính BC.
c. Gọi D là gđ của CA với đường tròn (O) (D khác A). CMR 3 điểm B,O,D thẳng hàng
d. Tính BA, CA
2. Cho đ B nằm giữa A và Csao cho AB=14cm, BC=28cm. Vẽ về 1 phía của AC các nửa đường tròn tâm I,K,O có đường kính theo thứ tự AB, BC, AC.Tính bán kính đường tròn (M) tiếp xúc ngoài với các nửa đường tròn (I), (K), và tiếp xúc trong với nửa đường tròn (O).
3. Cho đường tròn (O) nội tiếp tam giác đều ABC. 1 tiếp tuyến của đường tròn cắt AB, AC theo thứ tự ở M và N.
a. Tính diện tích AMN biết BC=8cm, MN=3cm
b. CMR: $MN^2=AM^2+AN^2-AM.AN$
c*. Chứng minh rằng: $\frac{AM}{MB}+\frac{AN}{NC}=1$
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (C) tâm O bán kính R. Hai đường cao AE và BK của tam giác ABC cắt nhau tại H ( với E thuộc BC, K thuộc AC).
1. Chứng minh tứ giác ABEK nội tiếp được trong một đường tròn
2. Chứng minh CE.CB = CK.CA
3.Chứng minh góc OCA = góc BAE
4. Cho B,C cố định và A di động trên (C) nhưng vẫn thoả mãn điều kiện tam giác ABC nhọn; khi đó H thuộc 1 đường tròn (T) cố định. Xác định tâm I và tính bán kính r của đường tròn (T), biết R=3cm.
Cho điểm M nằm ngoài đường tròn (O;R). Vẽ tiếp tuyến MA và cát tuyến MCB (MB > MC) nằm khác phía đối với đường thẳng MO. Đường tròn tâm I đường kính BC cắt AB, AC lần lượt tại E và D. BD cắt CE tại H, K là trung điểm AH.
a) Chứng minh tứ giác MAOI nội tiếp, xác định tâm S của đường tròn ngoại tiếp tứ giác này; và K là tâm đường tròn ngoại tiếp của tam giác ADE.
b) Chứng minh: OA song song KI.
c) Đường tròn (I;IK) cắt (S) tại F sao cho F nằm trên nửa mặt phẳng có bờ là MB không chứa điểm A. Chứng minh A, H, F thẳng hàng.
d) AH cắt BC tại G. Tia GD cắt MA tại N. Chứng minh tứ giác ANFB là tứ giác nội tiếp.
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (C) tâm O bán kính R. Hai đường cao AE và BK của tam giác ABC cắt nhau tại H ( với E thuộc BC, K thuộc AC).
1. Chứng minh tứ giác ABEK nội tiếp được trong một đường tròn
2. Chứng minh CE.CB = CK.CA
3.Chứng minh góc OCA = góc BAE
4. Cho B,C cố định và A di động trên (C) nhưng vẫn thoả mãn điều kiện tam giác ABC nhọn; khi đó H thuộc 1 đường tròn (T) cố định. Xác định tâm I và tính bán kính r của đường tròn (T), biết R=3cm
giúp mình với
cho tam giác abc nội tiếp đường tròn tâm O bán kính R. M là 1 điểm tùy ý trên đáy BC( M khác B, C) . Vẽ đường tròn O1 đi qua M và tiếp xúc với AB tại B. Vẽ đường tròn tâm O2 qua M và tiếp xúc với AC tại C. Hai đường tròn (O1) và (O2) cắt nhau tại điểm thứ hai D
1) chứng minh D nằm trên đường tròn
2) Chứng minh rằng khi M thay đổi trên đáy Bc thì các đường thẳng MD luôn đi qua 1 điểm cố định
3) giả sử tam giác ABC đều. Tính tích AM.AD theo R. Em có nhân xét gì qua kết quả vừa tìm được.
Cho tam giác ABC nội tiếp đường tròn tâm O bán kính R. M là 1 điểm tùy ý trên đáy BC( M khác B,C). Vẽ đường tròn tâm O1 đi qua M và tiếp xúc với AB tại B. Vẽ đường tròn tâm O2 đi qua M và tiếp xúc với AC tại C. Hai đường tròn (O1) và (O2) cắt nhau tại điểm thứ hai D
1) chứng minh D nằm trên đường tròn (O)
2) chứng minh rằng ki M thay đổi trên đáy BC thì các đườn thẳng MD luôn đi qua 1 điểm cố định
3)giả sử tam giác abc đều . Tính tích AM.AD theo R. Em có nhận xét gì kết quả vừa tìm được.