Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Incognito

Cho tam giác ABC nội tiếp đường tròn (O) và I là điểm nằm trong tam giác. Tia AI,BI,CI cắt BC,CA,AB lần lượt tại D,E,F. Gọi M,N,P lần lượt là trung điểm của AD,BE,CF. X,Y,Z thứ tự là hình chiếu của O lên EF,DE,DF. CMR: Đường tròn ngoại tiếp các tam giác XNP, YMP, ZMN đồng quy ?

Nguyễn Tất Đạt
8 tháng 2 2019 lúc 23:04

A B C D E F O I X Y Z M N P J S T R K L V G U Q

Gọi giao điểm thứ hai của AZ,BZ,CZ với đường tròn (O) là S,T,R. Cho đường thẳng DF cắt các đoạn ST,RT lần lượt tại K,L. Gọi AK giao CL tại V. Gọi Q là trung điểm đoạn DF. 

Trước hết, ta thấy: 5 điểm A,R,S,C,T cùng thuộc (O), AV cắt RT tại K, AS cắt CR ở Z, CV cắt ST ở L

Đồng thời có bộ điểm: (K Z L) thẳng hàng. Suy ra: Hệ điểm (A R V S C T) cùng thuộc 1 đường tròn (ĐL Pascal đảo)

Áp dụng ĐL Con Bướm cho 4 điểm A,B,S,T trên (O) thì có Z là trung điểm của FL. Mà P là trung điểm CF

Nên ZP là đường trung bình của \(\Delta\)FLC => ZP // CL. Tương tự: ZM // AK

Do đó: 2 góc ^MZP và ^AVC có 2 cặp cạnh song song => ^MZP = ^AVC = ^ABC (Do V thuộc (O) cmt)

Dễ thấy MQ là đường trung bình \(\Delta\)ADF => MQ // AB. Tương tự: QP // BC => ^MQP = ^ABC

Từ đó: ^MZP = ^MQP => Tứ giác MZQP nội tiếp đường tròn.

Nếu ta gọi trung điểm của DE,EF thứ tự là G,U thì như lập luận trên, các tứ giác NPUX, MYGN nội tiếp

Ta sẽ chứng minh các đường tròn (MPQ),(NPU),(MNG) đồng quy

Thật vậy: Gọi giao điểm thứ hai của (MPQ) và (NPU) là J => ^NJM = ^MJP + ^NJP = ^MQP + ^NUP

Bằng tính chất đường trung bình, góc có cặp cạnh song song dễ có:

^MQP = ^ABC, ^NUP = ^BAC => ^NJM = ^ABC + ^BAC = 1800 - ^ACB = ^MGN

Suy ra: Tứ giác MJNG nội tiếp => (MNG) cũng đi qua J => (MPQ),(NPU),(MNG) đồng quy

Hay 3 đường tròn (NPX),(YMN),(ZNP) đồng quy (tại J) (đpcm).

(P/S: Đề sai nhé, phải là (XNP),(YNM),(ZNP) đồng quy)


Các câu hỏi tương tự
NguyenVanDay
Xem chi tiết
Quandung Le
Xem chi tiết
Lê Tài Bảo Châu
Xem chi tiết
Trần Đức Huy
Xem chi tiết
Trần Đức Huy
Xem chi tiết
Trần Đức Huy
Xem chi tiết
Trần Đức Huy
Xem chi tiết
Trần Đức Huy
Xem chi tiết
Trần Đức Huy
Xem chi tiết