Bài 10: Cho đường tròn (O) cắt (O') tại A, B (O, O' nằm khác phía so với AB). Kẻ đường kính AC của (O) và đường kính AD của (O'). a) Chứng minh B, C, D thẳng hàng. b) Gọi giao điểm thứ 2 của CA với (O') là E, của DA với (O) là F. Chứng minh: C, D, E, F cùng thuộc một đường tròn. c) Chứng minh: A là tâm đường tròn nội tiếp tam giác BEF. d) Chứng minh: CF, BA, DE đồng quy.
Giải giúp mình các bài này với ạ!
1) Từ điểm A nằm ngoài đường tròn tâm O, vẽ tiếp tuyến AB (B là tiếp điểm). Lấy điểm C thuộc đường tròn tâm (O) khác điểm B sao cho AB = AC
a. CM : Tam giác OAB = tam giác OAC
b. CM : AC là tiếp tuyến của đường tròn tâm O
c. Gọi I là giao điểm của OA và BC. Tính AB biết bán kính (R) = 5cm, BC = 8cm
2) Lấy 2 điểm A và B thuộc đường tròn tâm O (3 điểm A, B, O không thẳng hàng). Tiếp tuyến của O tại A cắt tia phân giác của góc AOB tại C.
a. So sánh tam giác OAC và tam giác OBC.
b. CM : BC là tiếp tuyến của đường tròn tâm O
3) Cho đường tròn tâm O, bán kính R. Lấy điểm A cách O một khoảng = 2R. Từ A vẽ 2 tiếp tuyến AB, AC (B,C là tiếp điểm). OA cắt đường tròn tâm O tại I. Đường thẳng qua O và vuông góc với OB cắt AC tại K.
a. CM : OK // AB
b. CM : tam giác OAK là tam giác cân
c. CM : KI là tiếp tuyến của đường tròn tâm O.
Cho đường tròn (O; R). Từ điểm A nằm ngoài đường tròn kẻ các tiếp tuyến AB, AC với đường tròn (B,C là các tiếp điểm). Gọi H là trung điểm của BC
a, Chứng minh ba điểm A, H, O thẳng hàng và các điếm A, B, C, O cùng thuộc một đường tròn
b, Kẻ đường kính BD của (O). Vẽ CK vuông góc vói BD. Chứng minh AC.CD = CK.AO
c, Tia AO cắt đường tròn (O) tại M (M nằm giữa A và O). Chứng minh M là tâm đường tròn nội tiếp tam giác ABC
d, Gọi I là giao điểm của AD và CK. Chứng minh rằng I là trung điểm của CK
Cho tam giác ABC nội tiếp đường tròn O. Giả sửcác tiếp tuyến với O tại B và C cắt nhau tại P nằm khác phía với A đối với BC trên cung BC không chứa lấy điểm A lấy điểm K sao cho K khác B và C. đường thẳng PK cắt đường tròn O lần thứ hai tại Q khác A.
chứng minh rằng các đường phân giác của các góc KBQ và KCQ đi qua cùng một điểm trên đường thẳng PQ
Giả sử đường thẳng AK đi qua trung điểm M của BC Chứng minh AQ song song với BC
Bài 3. Cho ABC nội tiếp (O) đường kính AC (BA < BC). Trên đoạn thẳng OC lấy điểm I bất kì (I khác O và C). Đường thẳng BI cắt đường tròn tâm (O) tại điểm thứ hai là D. Kẻ CH vuông góc với BD (H thuộc BD), DK vuông góc với AC (K thuộc AC).
a) Chứng minh tứ giác DHKC nội tiếp
b) Cho độ dài AC bằng 4 cm và ABD = 600 . Tính diện tích tam giác ACD
c) Đường thẳng đi qua K song song với BC cắt đường thẳng BD tại E. Chứng minh rằng khi I thay đổi trên đoạn thẳng OC thì E luôn nằm trên một đường tròn cố định.
Bài 4. Cho đường tròn tâm (O), hai điểm A, B nằm trên (O) sao cho AOB = 900 . Điểm C trên cung lớn AB sao cho AC > BC và tam giác ABC có ba góc đều nhọn. Các đường cao AI và BK của tam giác ABC cắt nhau tại H, BK cắt (O) tại N (N khác B); AI cắt (O) tại điểm M (M khác điểm A); NA cắt MB tại điểm D. Chứng minh rằng
a) Tứ giác CIHK nội tiếp
b) MN là đường kính của (O)
c) OC song song với DH.
GIÚP MÌNH VỚI!!!
GẤPPP
Cho đường tròn (O;R) và một điểm A ngoài đường tròn (O) sao cho OA = 3R. Từ A vẽ hai tiếp tuyến AB, AC với (O) (B, C là các tiếp điểm). a) Chứng minh tứ giác OBAC nội tiếp và OA vuông góc với BC b) Từ B vẽ đường thẳng song song với AC cắt đường tròn tâm (O) tại D (D khác B), AD cắt đường tròn (O) tại E (E khác D). Tính tích AD.AE theo R. c) Tia BE cắt AC tại F. Chứng minh F là trung điểm AC. d) Tính theo R diện tích tam giác BDC.
Cho điểm A nằm ngoài đường tròn (O). Qua A kẻ tiếp tuyến AB ( B là tiếp điểm) và cát tuyến ACD ( C nằm giữa A, D) với đường tròn (O) sao cho C và B nằm khác phía đối với OA. H là trung điểm CD
a) C/m: bốn điểm A,B, O, H cùng thuộc 1 đường tròn
b) C/m: AB2= AC. AD
c) Vẽ BI vuongo góc với OA tại I. Chứng minh tam giác AIC đồng dạng tam giác ADO
Bài 1: Điểm C nằm giữa hai điểm A và B. Vẽ đường tròn tâm O, đường kính AB và đường tròn tâm O' đường kính BC. Vẽ tiếp tuyến chung của hai đường tròn tiếp xúc với đường tròn tâm O và tâm O' tại D và E. AD cắt BE tại M
a) tam giác MAB là tam giác j?
b) chứng minh CDME là hình chữ nhật và MC là tiếp tuyến của 2 đường tròn tâm O và tâm O'
c) Kẻ tia Ex vuông góc với EA và tia By vuông góc với BA. Ex cắt By tại N. Chứng minh 3 điểm D,C.N thẳng hàng.
Bài 2: Cho (O) và (O') cắt nhau tại A và B. Tiếp tuyến tại A của (O) cắt (O') tại D. Tiếp tuyến tại A của (O') cắt (O) tại C. Chứng minh rằng:
a) tam giác ABC đồng dạng với tam giác DBA
b) (AC/AD)^2 ( AC trên AD tất cả mũ 2) = BC/BD( AC trên AD tất cả mũ 2 bằng BC/BD)
c) Gọi E là điểm đối xứng của A qua B. Chứng minh ACED là tứ giác nội tiếp.
Cho đường tròn (O;R) và 1 điểm A nằm ngoài (O) sao cho OA=3R. Từ điểm A vẽ 2 tiếp tuyến AB,AC tới (O) (B,C là tiếp điểm)
a, Chứng minh tứ giác OBAC nội tiếp
b, Từ B vẽ đường thẳng song song với AC cắt (O) tại D (D khác B); AD cắt (O) tại E (E khác D). Chứng minh AE.AD=AB^2,từ đó tính tích AD.AE theo R
c, Chứng minh CEA=BEC
d, Tia BE cắt AC tại F. Chứng minh F là trung điểm của AC