Cho tam giác ABC và H là trực tâm. Các đường thẳng vuông góc với AB tại B và vuông góc với AC tại C cắt nhau tại K.
a) Tứ giác BKCH là hình gì ? Vì sao ?
b) Giả sử góc BAC = 60 độ. Tính số đo của góc BKC
c) Gọi M là trung điểm của BC. CM: M là trung điểm của HK
d) Đường thẳng vuông góc với BC tại M cắt AK tại O. CM: O cách đều 4 điểm A, B, C, K
e) Gọi G là trọng tâm của tam giác ABC. CM: AH = 2OM và H, G, O thẳng hàng
Cho tam giác ABC trực tâm H. Các đường thẳng vuông góc với AB tại B và vuông góc với AC tại C cắt nhau tại D. CmR
a, Góc BAC+ góc BHC = 180 độ
b, Gọi M là trung điểm của BC, O là trung điểm AD. CM OM = 1/2*AH
Cho tam giác ABC, trực tâm H. Gọi M là trung điểm của BC,N là trung điểm của AC. Đường vuông góc với BC tại M và đường vuông góc với AC tại N cắt nhau ở O. Trên tia đối của OC lấy điểm K sao cho OK=OC
a) Chứng minh: KB vuông góc với KA; KA vuông góc với AC
b) Chứng minh tứ giác AHBK là hình bình hành
c) Chứng minh rằng: OM=1/2 AH
Giúp em giải bài này với ạ
Cho tam giác ABC có 3 góc nhọn, trực tâm H. Gọi I,P,M lần lượt là trung điểm của AB,AC,BC.
a, IPMB là hình gì?
b, đường thẳng vuông góc với AB kẻ từ B cắt đường thẳng vuông góc với AC kẻ từ C tại D; O là trung điểm của AD. CMR OM vuông góc với BC và 2OM=AH
c, Gọi G là trọng tâm của tam giác ABC. CMR 3 điểm H,G,O thẳng hàng.
Cho tam giác ABC, trực tâm H. Đường vuông góc với AB tại B, đường vuông góc với AC tại C cắt nhau ở D. Gọi O là trung điểm của AD, M là trung điểm của BC. Chứng minh rằng:
a, O là giao điểm của các đường trung trực của tam giác ABC
b, AH=2MO
cho tam giác vuông ABC có A=90 . Kẻ AH vuông góc với BC tại H. Kẻ HD vuông góc với AC tại D và HE vuông góc với AB tại E. Gọi M là trung điểm của HC
a.Cminh tứ giác AEHD là hình chữ nhật
b. Gọi N là trung điểm AE. Gọi O là giao điểm cảu AH và DE. CMINH 3 ĐIỂM O,M,N thẳng hàng
c. cminh tam giác MDE là tam giác vuông
d. Giả sử tứ giác OHMD là hình vuông có diện tích bằng a. Tính diện tích ABC theo a
cho tam giác vuông ABC có A=90 . Kẻ AH vuông góc với BC tại H. Kẻ HD vuông góc với AC tại D và HE vuông góc với AB tại E. Gọi M là trung điểm của HC
a.Cminh tứ giác AEHD là hình chữ nhật
b. Gọi N là trung điểm AE. Gọi O là giao điểm cảu AH và DE. CMINH 3 ĐIỂM O,M,N thẳng hàng
c. cminh tam giác MDE là tam giác vuông
d. Giả sử tứ giác OHMD là hình vuông có diện tích bằng a. Tính diện tích ABC theo a
Cho tam giác ABC vuông tại A (AC > AB) đường cao AH (H ∈ BC).Trên tia đối của tia HB lấy điểm D sao cho HB = HD. Kẻ DE vuông góc với AC tại E và HK vuông góc với AC tại K. Gọi M là trung điểm của DC. Chứng minh góc HEM vuông
Cho tam giác vuông ABC có \(\widehat{A}\) = 90o. Kẻ AH vuông góc với BC tại H. Kẻ HD vuông góc với AC tại D và HE vuông góc với AB tại E. Gọi M là trung điểm của HC
a) Chứng minh tứ giác AEHG là hình chứ nhật
b) Gọi N là trung điểm của AE. Gọi O là giao điểm của AH và DE. Chứng minh ba điểm M,O, N thẳng hàng