cho tam giác ABC nhọn có AD,BE,CF là 3 đường cao cắt nhau tại H.M,N lần lượt là hình chiếu của B,C trên E,F.CMR: a) tam giác AEF đồng dạng tam giác ABC b) H là tâm đường tròn nội tiếp tam giác DEF c) A,B,C là tâm đường tròn bàng tiếp tam giác DEF d) DE+DF=MN
08:47
cho tam giác ABC nhọn có AD,BE,CF là 3 đường cao cắt nhau tại H.M,N lần lượt là hình chiếu của B,C trên E,F.CMR:
a) tam giác AEF đồng dạng tam giác ABC
b) H là tâm đường tròn nội tiếp tam giác DEF
c) A,B,C là tâm đường tròn bàng tiếp tam giác DEF
d) DE+DF=MN
cho tam giác ABC nhọn có AD,BE,CF là 3 đường cao cắt nhau tại H.M,N lần lượt là hình chiếu của B,C trên E,F.CMR:
a) tam giác AEF đồng dạng tam giác ABC
b) H là tâm đường tròn nội tiếp tam giác DEF
c) A,B,C là tâm đường tròn bàng tiếp tam giác DEF
d) DE+DF=MN
Cho tam giác ABC nhọn, các đường cao AD,BE,CF cắt nhau tại H. Chứng minh a) BDHF nội tiếp b) BFEC nội tiếp c) HA.HD=HB.HE=HF.HC d) tam giác AEF đồng dạng tam giác ABC e) H là tâm đường tròn ngoại tiếp tam giác EFD
Cho tam giác ABC(AB<AC)nội tiếp đường tròn. Ba đường cao AD, BE,CF cắt nhau tại H.gọi I là tâm đường tròn ngoại tiếp tam giác AEF .M là giao điểm BE và DF. N là giao điểm CF và DE. Gọi K là tâm đường tròn ngoại tiếp DFIE. Chứng minh Ak vuông góc MN
Cho tam giác ABC (AB<AC) có 3 góc nhọn nội tiếp đường tròn O bán kính R. Ba đường cao AD,BE,CF cắt nhau tại H. Gọi I là tâm đường tròn nội tiếp tam giác ABC, J là tâm đường tròn bàng tiếp góc A. Chứng minh: AI.AJ=AB.AC
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Kẻ đường cao AH và đường kính AD. Gọi M và N lần lượt là hình chiếu vuông góc của B và C trên AD. Chứng minh rằng tam giác ABC đồng dạng với tam giác HMN và trung điểm I của cạnh BC cũng là tâm đường tròn ngoại tiếp tam giác HMN.
Cho tam giác ABC nhọn nội tiếp (O).Kẻ đường cao AD của tam giác ABC, đường kính AK của đường tròn (O). Gọi E và F lần lượt là hình chiếu của B và C trên AK.Gọi M và N lần lượt là trung điểm của BC và AC. CM: M là tâm đường tròn ngoại tiếp tam giác DEF
Cho tam giác ABC nhọn nội tiếp (O).Kẻ đường cao AD của tam giác ABC, đường kính AK của đường tròn (O). Gọi E và F lần lượt là hình chiếu của B và C trên AK.Gọi M và N lần lượt là trung điểm của BC và AC. CM: M là tâm đường tròn ngoại tiếp tam giác DEF