a.Ta có: là trung điểm mỗi đường
là hình bình hành
b.Từ câu a
Mà
là hình bình hành
Mà là hình chữ nhật
tại trung điểm mỗi đường
Do là trung điểm
là trung điểm
thẳng hàng
c.Vì là hình bình hành
Để là hình vuông vuông cân tại
a.Ta có: là trung điểm mỗi đường
là hình bình hành
b.Từ câu a
Mà
là hình bình hành
Mà là hình chữ nhật
tại trung điểm mỗi đường
Do là trung điểm
là trung điểm
thẳng hàng
c.Vì là hình bình hành
Để là hình vuông vuông cân tại
Cho tam giác ABC nhọn có AB<AC gọi N là trung điểm của AC lây điểm D trên tia BN sao cho BN=ND
A) cmr ABCD là hình bình hành
B) kẻ AP vuông góc với BC, kẻ CQ vuông góc với AD, CMR: P,N,Q thẳng hàng
C) tam giác ABC cần thêm điều kiện gì để tứ giác ABCD là hình vuông
Cho tam giác ABC nhọn có AB < AC. Gọi N là trung điểm của AC. Lấy điểm D trên tia BN sao cho BN = ND. Kẻ .
a) Chứng minh N là trung điểm của PQ.
b) Tam giác ABC cần thêm điều kiện gì để tứ giác ABCD là hình vuông.
Bài 5: Cho hình bình hành ABCD. Trên đưởng chéo AC chọn hai điểm E và F sao
cho AE=EF=FC.
a) Tứ giác BEDF là hình gì?
b) Chứng minh tam giác CFD= tam giác AEB
c) Chứng minh tam giác CFB= tam giác EAD
Bài 7: Cho tam giác ABC có AB=6, AC=8, BC=10.
a) Xác định D sao cho BDCA là hình vuông.
b) Tính độ dài DA.
c) Tính diện tích ABCD.
Bài 8: Cho hình thang ABCD. Hai đường chéo AC và BD cắt nhau tại O.
a) Xác định O để ABCD là hình bình hành.
b) Hình bình hành ABCD cần thêm điều kiện gì để trở thành hình thoi.
c) Cho hình thoi ABCD có góc ABC=90 0 . Hỏi tứ giác ABCD đã trở thành hình
gì?
Bài 10: Cho tam giác ABC vuông tại A. Kẻ đường cao AH. Gọi D, E là các hình
chiếu của H trên AB, AC và M, N theo thứ tự là các trung điểm của các đường thẳng
BH, CH.
a) Chứng minh tứ giác MDEN là hình thang vuông.
b) Gọi P là giao điểm của đường thẳng DE với đường cao AH và Q là trung điểm
của đường thẳng MN. Chứng minh PQ vuông góc DE.
c) Chứng minh hệ thức 2PQ = MD + NE.
Bài 13: Qua đỉnh A của hình vuông ABCD ta kẻ hai đường thẳng Ax, Ay vuông góc
với nhau. Ax cắt cạnh BC tại điểm P và cắt tia đối của tia CD tại điểm Q. Ay cắt tia
đối của tia BC tại điểm R và cắt tia đối của tia DC tại điểm S.
a) Chứng minh các tam giác APS, AQR là các tam giác cân.
b) Gọi H là giao điểm của QR và PS; M, N theo thứ tự là trung điểm của QR, PS.
Chứng minh tứ giác AMHN là hình chữ nhật.
Bài 14: Cho tứ giác ABCD có M, N, P, Q lần lượt là trung điểm của AB, BC, CA,
AD.
a) Tứ giác MNPQ là hình gì?
b) Gọi M là trung điểm của DB, AD=6, AB=8. Cho DBAM. Tính QM.
Bài 15: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của AB và AC.
a) Tứ giác BMNC là hình gì? Vì sao?
b) Lấy điểm E đối xứng với M qua N. Chứng minh tứ giác AECM là hình bình
hành.
c) Tứ giác BMEC là hình gì? Vì sao?
d) Tam giác ABC cần thêm điều kiện gì thì tứ giác AECM là hình vuông? Vẽ
hình minh hoạ.
Mong mn giúp mk vs ah
Cho tam giác ABC vuông tại A. Gọi D là trung điểm của BC. Từ D kẻ DM vuông góc với AB ( M thuộc AB), DN vuông góc với AC ( N thuộc AC). Trên tia DN lấy điểm E sao cho N là trung điểm của DE
1. Tứ giác AMDN là hình gì ?
2. Chứng minh : N là trung điểm AC
3. Tứ giác ADCE là hình gì ? Vì sao ?
4. Tam giác ABC có thêm điều kiện gì để tứ giác ABCE là hình thang cân
Bài 7: Cho tam giác ABC có AB=6, AC=8, BC=10.
a) Xác định D sao cho BDCA là hình vuông.
b) Tính độ dài DA.
c) Tính diện tích ABCD.
Bài 8: Cho hình thang ABCD. Hai đường chéo AC và BD cắt nhau tại O.
a) Xác định O để ABCD là hình bình hành.
b) Hình bình hành ABCD cần thêm điều kiện gì để trở thành hình thoi.
c) Cho hình thoi ABCD có góc ABC=90 0 . Hỏi tứ giác ABCD đã trở thành hình
gì?
Bài 9: Cho tam giác ABC, trung tuyến AM. Gọi D là trung điểm của AB, M’ là
điểm đối xứng với M qua D.
a) Chứng minh điểm M’ dối xứng với M qua AB.
b) Các tứ giác AEMC, AEBM là hình gì? Vì sao?
c) Cho BC = 4cm, tính chu vi tứ giác AM’BM. Tam giác ABC thỏa mãn điều
kiện gì để tứ giác AEBM là hình vuông.
Bài 10: Cho tam giác ABC vuông tại A. Kẻ đường cao AH. Gọi D, E là các hình
chiếu của H trên AB, AC và M, N theo thứ tự là các trung điểm của các đường thẳng
BH, CH.
a) Chứng minh tứ giác MDEN là hình thang vuông.
b) Gọi P là giao điểm của đường thẳng DE với đường cao AH và Q là trung điểm
của đường thẳng MN. Chứng minh PQ vuông góc DE.
c) Chứng minh hệ thức 2PQ = MD + NE.
Bài 11: Cho tam giác ABC vuông tại A. Kẻ đường cao AH, dựng hình chữ nhật
AHBD và AHCE. Gọi P, Q theo thứ tự là trung điểm của AB, AC. Chứng minh:
a) Ba điểm D, A, E thẳng hàng.
b) PQ là trung trực của đoạn thẳng AH.
c) Ba điểm D, P, H thẳng hàng.
d) DH vuông góc EH.
Bài 12: Cho tam giác ABC phía ngoài tam giác, ta dựng các hình vuông ABDE và
ACFG.
a) Chứng minh BG = CE Va BG vuông góc CE.
b) Gọi M, N theo thứ tự là các trung điểm của các đường thẳng BC, EG và Q, N
theo thứ tự là tâm của các hình vuông ABDE, ACFG. Chứng minh tứ giác
MNPQ là hình vuông.
Bài 1: Cho tứ giác ABCD có BC = AD và BC không song song với AD, gọi M, N,
P, Q, E, F lần lượt là trung điểm của các đoạn thẳng AB, BC, CD, DA, AC, BD.
a) Chứng minh tứ giác MEPF là hình thoi.
b) Chứng minh các đoạn thẳng MP, NQ, EF cùng cắt nhau tại một điểm.
c) Tìm thêm điều kiện của tứ giác ABCD để N, E, F, Q thẳng hàng
Bài 2: Cho tam giác ABC vuông tại A (AB<AC), M là trung điểm BC, từ M kẻ
đường thẳng song song với AC, AB lần lượt cắt AB tạt E, cắt AC tại F
a) Chứng minh EFCB là hình thang
b) Chứng minh AEMF là hình chữ nhật
c) Gọi O là trung điểm AM. Chứng minh: E và F đối xứng qua O.
d) Gọi D là trung điểm MC. Chứng minh: OMDF là hình thoi
Bài 3: Cho tam giác ABC có AB<AC. Gọi M, N, P lần lượt là trung điểm của AB,
AC, BC. Vẽ đường cao AH của tam giác ABC. Tứ giác HMNP là hình gì.
Bài 4: Cho tứ giác ABCD có góc DAB = góc BCD = 120 0 . Tính số đo của hai góc
còn lại để ABCD là hình bình hành.
Bài 5: Cho hình bình hành ABCD. Trên đưởng chéo AC chọn hai điểm E và F sao
cho AE=EF=FC.
a) Tứ giác BEDF là hình gì?
b) Chứng minh CFDAEB .
c) Chứng minh CFBEAD .
Bài 6: Cho tam giác ABC cân tại A, đường cao AD. Gọi E là điểm đối xứng với D qua
trung điểm M của AC.
a) Tứ giác ADCE là hình gì? Vì sao?
b) Tứ giác ABDM là hình gì? Vì sao?
c) Tam giác ABC có thêm điều kiện gì thì ADCE là hình vuông?
d) Tam giác ABC có thêm điều kiện gì thì ABDM là hình thang cân?
cho tam giác ABC vuông tại A. gọi D là trung điểm của BC. từ D kẻ DM vuông góc với AB( M \(\in\)AB), DN vuông góc với AC ( N\(\in\)AC). trên tia DN lấy E sao cho N là trung điểm của DE.
a/ tứ giác AMDN là hình gì? vì sao?
b/ CM: N là trung điểm AC
c/ tứ giấc ADCE là hình gì? vì sao?
d/ tam giác ABC cần có điều kiện gì để tứ giác ABCE là hình thang cân
cho tam giác ABC vuông tại A. gọi D là trung điểm của BC. từ D kẻ DM vuông góc với AB( M \(\in\)AB), DN vuông góc với AC ( N\(\in\)AC). trên tia DN lấy E sao cho N là trung điểm của DE.
a/ tứ giác AMDN là hình gì? vì sao?
b/ CM: N là trung điểm AC
c/ tứ giấc ADCE là hình gì? vì sao?
d/ tam giác ABC cần có điều kiện gì để tứ giác ABCE là hình thang cân
Bài tập 4: Cho tam giác ABC vuông ở A. Gọi M,N lần lượt là trung điểm của AB và AC. Lấy điểm P sao cho N là trung điểm của MP.
a) Chứng minh tứ giác BMCP là hình bình hành.
b) Tứ giác AMPC là hình gì? Vì sao?
c) TRên tia đối của PC lấy điểm D sao cho PC = PD. Chứng minh AD = BC.
d) Tam giác ABC có thêm điều kiện gì để tứ giác ABCD có diện tích bằng AB?