Cho tam giác ABC nhọn (AB<AC), kẻ phân giác AD của góc BAC và đường trung tuyến AM (M,D thuộc BC). Vẽ 2 đường tròn ngoại tiếp các tam giác ABC và ADM, 2 đường tròn này cắt nhau tại điểm thứ 2 là I, đường tròn ngoại tiếp tam giác ADM cắt 2 cạnh AB và AC theo thứ tự tại E và F. Tia AD cắt đường tròn ngoại tiếp tam giác ABC tại J.
a, Chứng minh 3 điểm I; M; J thẳng hàng.
b, Gọi K là trung điểm È, tia MK cắt AC và tia BA theo thứ tự tại P và Q. Chứng minh tam giác PAQ cân
Cho tam giác ABC cân tại A. Phân giác Ax của góc BAC cắt BC tại H. Trên cạnh AB lấy điểm M, trên tia đối của tia CA lấy điểm N sao cho BM=CN
a,Nối MN giao với BC tại I. Chứng minh I là tđ của MN
b, Trung trực của MN giao với Ax tại O. Chứng minh OC vuông góc với AC
c,Chứng minh 4/BC^2=1/AB^2+1BC
d, Cho AB=6cm; OB=4,5cm. Tính diện tích tam giác ABC
cho tam giác nhọn ABC có AB < AC . Gọi O là trung điểm của BC . Kẻ các đường cao BM và CN của tam giác ABC . Tia phân giác của góc BAC cắt tia phân giác của góc MON tại D . Gọi E là giao điểm của AD và BC . CMR tứ giác BNDE nội tiếp
cho tam giác ABC vuông tại A, AB=27cm, AC=36cm
a. tính số đocác góc nhọn của tam giác ABC ( làm tròn đến độ )
b. vẽ đường thẳng vuông góc với đoạn BC tại B đường thẳng này cắt tia CA tại D . tính AD
c. vẽ E đối xứng với A qua BC . không tính AE . chứng minh 1/AE^2=1/4AB^2+1/4ac^2
d. trên nửa mặt phẳng bờ BCkhông chứa A lấy điểm M sao cho tam giác MBC vuông góc tại M . chứng minh AM là tia phân giác của góc BAC
1. Cho tam giác ABC cân tại A. Tia phân giác Ax của góc A cắt BC tại H. Trên AB lấy điểm M,trên tia đối của tia CA lấy điểm N sao cho BM=CN.
a. Nối MN cắt BC tại I. Chứng minh I là trung điểm của MN
b. Đường trung trực của MN cắt Ax tại O. Chứng minh OC vuông góc AC
c. Cm : 4/BC2 = 1/AB2 + 1/AC2
d. Biết AB= 6 cm,OB = 4,5 cm. Tính diện tích tam giác ABC
Cho (O;R) và dây cung BC cố định (BC<2R).Điểm A di động trên đường tròn sao cho tam giác ABC nhọn,Gọi AD là đường cao của tam giác ABC và H là trực tâm tam giác ABC
a)Đường thẳng chứa tia phân giác góc ngoài góc BHC cắt AB,AC lần lượt tại M,N.Chưng minh tam giác AMN cân
b)Gọi E,F lần lượt là hình chiếu của D trên BH,CH.Chứng minh OA vuông goác với EF
c)Đường tròn ngoại tiếp tam giác AMN cắt đường phân giác góc trong của goác BAC tại K.Chứng minh rằng đường thẳng HK luôn đi qua 1 điểm cố định
cho tam giác ABC , trên cùng một nửa mặt phẳng chứa điểm C bờ là đường AB, dựng tia Ax vuông góc vơi AB. trên tia Ax xác định điểm B' sao cho AB'=AB. trên nửa mặt phẳng chứa điểm B bờ là đường thẳng AC dựng tia Ay vuông góc vơi AC, trên Ay lấy C' sao cho AC'=AC. nối B'C' cắt đường thẳng chứa đường cao AD của tam giác ABC tại M. chứng minh M là trung điểm của B'C'
CHO TAM GIÁC ABC CÂN TẠI A , TIA PHÂN GIÁC Ax CỦA GÓC BAC CẮT BC TẠI H . TRÊN CẠNH AB LẤY ĐIỂM M , TRÊN TIA ĐỐI CỦA TIA CA LÂY ĐIỂM N SAO CHO BM=CN.
A. NỐI MN CẮT BC TẠI I , CHỨNG MINH I LÀ TRUNG ĐIỂM CỦA MN.
B. TRUNG TRỰC CỦA MN CẮT Ax TẠI O , CHỨNG MINH OC VUÔNG GÓC VỚI AC.
C. CHỨNG MINH \(\frac{4}{BC^2}=\frac{1}{AB^2}+\frac{1}{BO^2}\)
D. BIẾT AB = 6CM, OB=4,5 CM.TÍNH DIỆN TÍCH TAM GIÁC ABC
Cho tam giác ABC vuông tại A có đường cao AH. Tia phân giác góc BAH cắt BH tại D. Gọi M là trung điểm AB. E là giao điểm MD và AH. Chứng minh DAH = CEHCho tam giác ABC vuông tại A có đường cao AH. Tia phân giác góc BAH cắt BH tại D. Gọi M là trung điểm AB. E là giao điểm MD và AH. Chứng minh DAH = CEHCho tam giác ABC vuông tại A có đường cao AH. Tia phân giác góc BAH cắt BH tại D. Gọi M là trung điểm AB. E là giao điểm MD và AH. Chứng minh DAH = CEHCho tam giác ABC vuông tại A có đường cao AH. Tia phân giác góc BAH cắt BH tại D. Gọi M là trung điểm AB. E là giao điểm MD và AH. Chứng minh DAH = CEH. AB>AC