Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hoàng Minh Quang

Cho tam giác ABC nhọn (AB <AC). Gọi D, F lần lượt là trung điểm của AB, BC . Lấy điểm G đối xứng với điểm D qua điểm F . a) Chứng minh rằng: tứ giác BDCG là hình bình hành. b) Qua A kẻ tia Ax song song với BC . Qua F kẻ tia Fy song song với AB . Gọi H là giao điểm của Ax và Fy . Chứng minh rằng: AF / /HC. c) Lấy điểm K trên đoạn thẳng HC sao cho: HK=1/3HC . Gọi I là trung điểm của AC . Gọi J là giao điểm của AF và DC . Chứng minh rằng: Ba điểm J, I, K thằng hàng.

Nguyễn Ngọc Anh Minh
12 tháng 9 2023 lúc 16:25

A B C D F G x y H K I J

a/

FB=FC (gt); FD=FG (gt) => BDCG là hình bình hành (Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường là hbh)

b/

Ax//BC => AH//FB

Fy//AB => FH//AB

=> ABFH là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

=> AH=FB (cạnh đối hbh); Mà FB=FC => AH=FC

Ta có Ax//BC => AH//FC

=> AFCH là hbh (Tứ giác có 1 cặp cạnh đối // và = nhau là hbh)

=> AF//HC (cạnh đối hbh)

c/

DA=DB (gt)

FB=FC (gt)

=> J là trọng tâm của tg ABC \(\Rightarrow AJ=\dfrac{2}{3}AF\)

\(HK=\dfrac{1}{3}HC\Rightarrow CK=\dfrac{2}{3}HC\)

Ta có AFCH là hbh (cmt) =>AF=HC

=> AJ=CK (Tứ giác có 1 cặp cạnh đối // và = nhau là hbh)

Ta có

AF//HC (cmt) => AJ//CK

=>AKCJ là hbh 

Nối J với K cắt AC tại I'

=> I'A=I'C (trông hbh hai đường chéo cắt nhau tại trung điểm mỗi đường) => I' là trung điểm AC

Mà I cũng là trung điểm AC

\(\Rightarrow I'\equiv I\) => J; I; K thẳng hàng

 


Các câu hỏi tương tự
Hoàng Minh Quang
Xem chi tiết
Sơn
Xem chi tiết
hehe boi
Xem chi tiết
Trần Bảo Khang
Xem chi tiết
Đoàn Lê Na
Xem chi tiết
Dương Thúy Hiền
Xem chi tiết
Nguyễn Minh Gia Bảo
Xem chi tiết
Ngô Tuấn Đạt
Xem chi tiết
Huong Bui
Xem chi tiết