Cho tam giác ABC nhọn (AB <AC). Gọi D, F lần lượt là trung điểm của AB, BC . Lấy điểm G đối xứng với điểm D qua điểm F . a) Chứng minh rằng: tứ giác BDCG là hình bình hành. b) Qua A kẻ tia Ax song song với BC . Qua F kẻ tia Fy song song với AB . Gọi H là giao điểm của Ax và Fy . Chứng minh rằng: AF / /HC. c) Lấy điểm K trên đoạn thẳng HC sao cho: HK=1/3HC . Gọi I là trung điểm của AC . Gọi J là giao điểm của AF và DC . Chứng minh rằng: Ba điểm J, I, K thằng hàng.
a/
FB=FC (gt); FD=FG (gt) => BDCG là hình bình hành (Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường là hbh)
b/
Ax//BC => AH//FB
Fy//AB => FH//AB
=> ABFH là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)
=> AH=FB (cạnh đối hbh); Mà FB=FC => AH=FC
Ta có Ax//BC => AH//FC
=> AFCH là hbh (Tứ giác có 1 cặp cạnh đối // và = nhau là hbh)
=> AF//HC (cạnh đối hbh)
c/
DA=DB (gt)
FB=FC (gt)
=> J là trọng tâm của tg ABC \(\Rightarrow AJ=\dfrac{2}{3}AF\)
\(HK=\dfrac{1}{3}HC\Rightarrow CK=\dfrac{2}{3}HC\)
Ta có AFCH là hbh (cmt) =>AF=HC
=> AJ=CK (Tứ giác có 1 cặp cạnh đối // và = nhau là hbh)
Ta có
AF//HC (cmt) => AJ//CK
=>AKCJ là hbh
Nối J với K cắt AC tại I'
=> I'A=I'C (trông hbh hai đường chéo cắt nhau tại trung điểm mỗi đường) => I' là trung điểm AC
Mà I cũng là trung điểm AC
\(\Rightarrow I'\equiv I\) => J; I; K thẳng hàng