a) Vẽ tam giác đều ABC cạnh a = 3cm.
b) Vẽ tiếp đường tròn (O; R) ngoại tiếp tam giác đều ABC. Tính R.
c) Vẽ tiếp đường tròn (O; r) nội tiếp tam giác đều ABC. Tính r.
d) Vẽ tiếp tam giác đều IJK ngoại tiếp đường tròn (O; R).
Cho tam giác cân có cạnh đáy a, cạnh bên b. Tính R và r (biết R là bán kính đường tròn ngoại tiếp tam giác ABC và r là bán kính đường tròn nội tiếp tam giác ABC)
#các_bạn_giúp_mừn_nhaaaa ^_^
2.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C, D).
Đường tròn ngoại tiếp tam giác CEK và tam giác BFK cắt nhau tại L.
a) Chứng minh A, L, K thẳng hàng
b) Chứng minh HL vuông góc với AK
3. Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C).
Kẻ đường kính KM của đường tròn ngoại tiếp tam giác BKF và đường kính KN của đường tròn ngoại tiếp tam giác CEK.
Chứng minh M, H, K thẳng hàng
4. Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C).
Đường tròn ngoại tiếp tam giác BKF và đường tròn ngoại tiếp tam giác CEK cắt nhau tại N.
Tìm vị trí của K trên BC để BC, EF, HL đồng quy.
Tam giác ABC là tam giác gì nếu a^2+b^2+c^2 = 8R^2 ( R là bán kính đường tròn ngoại tiếp tam giác ABC )
Bài 3: Cho tam giác ABC. Gọi (P), (Q), (R) theo thứ tự là các đường tròn bàng tiếp trong các góc A, B, C. Gọi tiếp điểm của (Q), (R) trên đường thẳng BC theo thứ tự E, F. Chứng minh rằng CE = BF. Gọi H, I, K theo thứ tự là tiếp điểm của các đường tròn (P), (Q), (R) với các cạnh BC, AC, AB. Nếu AH = BI = CK thì tam giác ABC là tam giác gì?
cho tam giác ABC. đường tròn O đi qua A và C cắt cạnh AB,BC theo thứ tự tại K và N . Đường tròn tâm I ngoại tiếp tam giác ABC và đường tròn (j) ngoại tiếp tam giác KBN cắt nhau tại B và M. chứng minh Góc OMB=90*
cho tam giác ABC. đường tròn O đi qua A và C cắt cạnh AB,BC theo thứ tự tại K và N . Đường tròn tâm I ngoại tiếp tam giác ABC và đường tròn (j) ngoại tiếp tam giác KBN cắt nhau tại B và M. chứng minh Góc OMB=90*
1.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC.
L là hình chiếu của H trên AK. Chứng minh các tứ giác BFLK và CELK nội tiếp
2.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C, D).
Đường tròn ngoại tiếp tam giác CEK và tam giác BFK cắt nhau tại L.
a) Chứng minh A, L, K thẳng hàng
b) Chứng minh HL vuông góc với AK
3. Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C).
Kẻ đường kính KM của đường tròn ngoại tiếp tam giác BKF và đường kính KN của đường tròn ngoại tiếp tam giác CEK.
Chứng minh M, H, K thẳng hàng
4. Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C).
Đường tròn ngoại tiếp tam giác BKF và đường tròn ngoại tiếp tam giác CEK cắt nhau tại N.
Tìm vị trí của K trên BC để BC, EF, HL đồng quy.
1.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC.
L là hình chiếu của H trên AK. Chứng minh các tứ giác BFLK và CELK nội tiếp
2.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C, D).
Đường tròn ngoại tiếp tam giác CEK và tam giác BFK cắt nhau tại L.
a) Chứng minh A, L, K thẳng hàng
b) Chứng minh HL vuông góc với AK
3. Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C).
Kẻ đường kính KM của đường tròn ngoại tiếp tam giác BKF và đường kính KN của đường tròn ngoại tiếp tam giác CEK.
Chứng minh M, H, K thẳng hàng
4. Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C).
Đường tròn ngoại tiếp tam giác BKF và đường tròn ngoại tiếp tam giác CEK cắt nhau tại N.
Tìm vị trí của K trên BC để BC, EF, HL đồng quy.