Cho tam giác ABC. M, N tương ứng là trung điểm của các đoạn CA ; CB. I là
điểm bất kì trên đường thẳng MN (I \(\ne\) M ; I \(\ne\)N). Chứng minh rằng trong ba tam giác
IBC, ICA, IAB có một tam giác mà diện tích của nó bằng tổng các diện tích của hai
tam giác còn lại.
Bài 2: Cho tam giác ABC, trên tia đối của các tia BA, CB, AC lấy M, N, P sao cho BM =
BA, CN = CB, AP = AC. Chứng minh SMNP = 7SABC .
Bài 3: Cho tam giác ABC. Lấy điểm M, N, P lần lượt thuộc cạnh AC, AB, BC sao cho \(\frac{CM}{AC}=\frac{BF}{BC}=\frac{AN}{AB}=\frac{1}{3}\)
Gọi I là giao điểm của BM, CN. Gọi E là giao điểm của CN,
AP. Gọi F là giao điểm của AP, BM. Chứng minh : SEIF = SIMC + SFBP + SNEA
Bài 3 :Cho tam giác ABC. M, N tương ứng là trung điểm của các đoạn CA ; CB. I là
điểm bất kì trên đường thẳng MN( \(I\ne M,I\ne N\). )Chứng minh rằng trong ba tam giác
IBC, ICA, IAB có một tam giác mà diện tích của nó bằng tổng các diện tích của hai
tam giác còn lại.
5) Trên cạnh AB và CD của hình bình hành ABCD lần lượt lấy hai điểm M và N sao cho AM = CN, P là điểm trên AD, các đường thẳng MN, BP, CP chia hình bình hành thành ba tam giác và ba tứ giác. Chứng minh rằng trong đó diện tích một tam giác bằng tổng diện tích hai tam giác còn lại, và diện tích một tứ giác bằng tổng diện tích hai tứ giác còn lại.
Bài 1: Cho tam giác ABC cân ở A. Các đường thẳng qua đỉnh B,C và trung điểm O của đường cao tương ứng với đỉnhA cắt các cạnh AB, AC tương ứng tại M, N. Biết diện tích tam giác ABC bằng S, tính diện tích tứ giác AMON?
Bài 2: Cho tứ giác ABCD, M và N lần lượt là trung điểm của BC và AD. AM cắt BN ở I, DM cắt CN ở J. Chứng minh rằng: SMINJ=SABI+SCBJ
Bài 3: Cho tam giác ABC có AB=3cm, BC=4cm, CA=5cm. Đường cao, đường phân giác, đường trung tuyến của tam giác ABC kẻ từ đỉnh B chia tam giác thành 4 phần. Tính diện tích mỗi phần?
Bài 4: Cho tam giác ABC có diện tích 30cm2. trên cạnh AB lấy điểm D sao cho AD=2DB, trên cạnh AC lấy điểm E sao cho AE=3EC. Gọi M là giao điểm của BE và CD. Tính diện tích tam giác AMB?
Cho tam giác ABC. Gọi M, N là các trung điểm tương ứng của AC, BC. Chứng minh rằng diện tích của hình thang ABNM bằng 3/4 diện tích của tam giác ABC.
Cho tam giác ABC. Gọi M, N là các trung điểm tương ứng của AC, BC. Chứng minh rằng diện tích của hình thang ABMN bằng 3/4 diện tích của tam giác ABC.
cho tứ giác abcd gọi m,n lần lượt là trung điểm của ab và dc, đường chéo ac cắt mn tại trung điểm i của mn, chứng minh diện tích tam giác abc bằng diện tích tam giác adc
Cho tam giác ABC trên tia đối của tia BA, CA lần lượt lấy các điểmP, Q sao cho BP = CQ. Gọi M, N lần lượt là trung điểm của các đoạn thẳng BC, PQ. Đường thẳng MN cắt các đường thẳng AB và AC thứ tự tại I và K. Chứng minh rằng tam giác AIK cân.
Cho tam giác ABC vuông tại C (CA > CB), một điểm I trên cạnh AB. Trên nửa mặt phẳng bờ AB có chứa điểm C người ta kẻ các tia Ax, By vuông góc với AB. Đường thẳng vuông góc với IC kẻ qua C cắt Ax, By lần lượt tại các điểm M, N.
a) Chứng minh: tam giác CAI đồng dạng với tam giác CBN.
b) So sánh hai tam giác ABC và INC.
c) Chứng minh: góc MIN = 900.
d) Tìm vị trí điểm I sao cho diện tích ∆IMN lớn gấp đôi diện tích ∆ABC.Cho tam giác ABC vuông tại C (CA > CB), một điểm I trên cạnh AB. Trên nửa mặt phẳng bờ AB có chứa điểm C người ta kẻ các tia Ax, By vuông góc với AB. Đường thẳng vuông góc với IC kẻ qua C cắt Ax, By lần lượt tại các điểm M, N.
a) Chứng minh: tam giác CAI đồng dạng với tam giác CBN.
b) So sánh hai tam giác ABC và INC.
c) Chứng minh: góc MIN = 900.
d) Tìm vị trí điểm I sao cho diện tích ∆IMN lớn gấp đôi diện tích ∆ABC.