Cho tam giác ABC và M là một điểm bất kì thuộc miền trong của tam giác
a) CM MB+MC<AB+DC
b) Áp dụng câu a) CM : P<MA+MB+MC<2P
Trong đó \(\frac{AB+BC+CA}{2}\)là nửa chu vi tam giác ABC
Cho tam giác ABC, M nằm trong tam giác
a, CM MB+MC<AB+AC
b, CM nửa chu vi tam giác ABC<MA+MB+MC< chu vi tam giác ABC
cho tam giác ABC và M là một điểm bất kỳ nằm trong tam giác đó.C/m MA+MB+MC
a/lớn hơn nửa chu vi tam giác đó
b/nhỏ hơn chu vi tam giác ABC
1 ) Cho tam giác ABC . Gọi M là một điểm nằm trong tam giác . Chứng minh rằng : MA + MB + MC > nửa chu vi tam giác đó
2 ) Cho tam giác ABC . Gọi M là trung điểm cạnh BC . Chứng minh rằng : AM < AB + AC / 2
Cho điểm M nằm trong tam giác ABC. 1) So sánh AB với MA + MB . 2) CMR: AB + AC + BC < 2(MA + MB + MC) . 3) Chứng minh rằng MA + MB +MC lớn hơn nửa chu vi tam giác ABC.
Cho tam giác ABC và một điểm M nằm trong tam giác đó. Chứng Minh Rằng: MA+MB+MC > nửa chu vi tam giác ABC
Cho M nằm trong tam giác ABC. chứng minh rằng: Tổng MA+MB+MC lớn hơn nửa chu vi nhưng nhỏ hơn chu vi tam giác đó.
Đề bài: Cho điểm M nằm trong tam giác ABC. CM: Tổng MA+MB+MC lớn hơn nửa chu vi và bé hơn chu vi của tam giác đó.
Mình giải cách sau có đúng ko?
--Ta có: MB+MA>AB (Bất đẳng thức tam giác)
MC+MB>BC (Bất đẳng thức tam giác)
MA+MC>AC (Bất đẳng thức tam giác)
=> MB+MA+MC+MB+MA+MC>AB+BC+AC
=> 2MA+2MB+2MC > 2P
=> MA+MB+MC > P (được phần CM)
--Ta có: MA+AB>MB (Bất đẳng thức tam giác)
MB+BC>MC (Bất đẳng thức tam giác)
MC+AC>MA (Bất đẳng thức tam giác)
=> MA+AB+MB+BC+MC+AC>MB+MC+MA
=> MA+MB+MC+2P > MB+MC+MA
=> 2P >MA+MB+MC (được phần CM)
Mong các bạn có thể trả lời sớm nhất.
Đề bài: Cho điểm M nằm trong tam giác ABC. CM: Tổng MA+MB+MC lớn hơn nửa chu vi và bé hơn chu vi của tam giác đó.
Mình giải cách sau có đúng ko?
--Ta có: MB+MA>AB (Bất đẳng thức tam giác)
MC+MB>BC (Bất đẳng thức tam giác)
MA+MC>AC (Bất đẳng thức tam giác)
=> MB+MA+MC+MB+MA+MC>AB+BC+AC
=> 2MA+2MB+2MC > 2P
=> MA+MB+MC > P (được phần CM)
--Ta có: MA+AB>MB (Bất đẳng thức tam giác)
MB+BC>MC (Bất đẳng thức tam giác)
MC+AC>MA (Bất đẳng thức tam giác)
=> MA+AB+MB+BC+MC+AC>MB+MC+MA
=> MA+MB+MC+2P > MB+MC+MA
=> 2P >MA+MB+MC (được phần CM)
Mong các bạn có thể trả lời sớm nhất.