Cho tam giác ABC. M thuộc AB, N thuộc AC sao cho BM=CN. I;K theo thứ tự là trung điểm của MN và BC, IK cắt AB,AC lần lượt tại P và Q. Chứng minh AP=AQ.
Cho tam giác ABC. Lấy M, N, P lần lượt thuộc canh AC, AB, BC sao cho CM/AC=BP/BC=AN/AB=1/3. Gọi I là giao điểm của BM và CN. Gọi E là giao điểm của CN, AP. GỌi F là giao điểm của AP, BM. CHứng minh Seif=Simc+Sfbp+Snea
Cho tam giác ABC có AB < AC. Lấy M thuộc AB, N thuộc AC sao cho BM = CN. Gọi I, K lần lượt là trung điểm của MN và BC. Đường thẳng IK cắt AB, AC tại E, F. CM: Tam giác AEF cân.
Cho tam giác ABC có D;E;F lần lượt là trung điểm của BC;AC;AB. Trên BC lấy hai điểm M và N sao cho BM=MN=NC. Gọi AM cắt BE tại P. AN cắt CF tại Q. Chứng minh rằng: D;P;F thẳng hàng.
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQM
cho tam giác ABC có AB=9cm,AC=18cm.Trên cạnh AB,AC lần lượt lấy các điểm M,N sao cho AM=2 cm ,AN=4cm.trên các cạnh AB,AC lần lượt lấy D,E sao cho BD=CE. Gọi F,G lần lượt là trung điểm BC và DE. Đường thẳng GF cắt AB,AC lần lượt tại P và Q . Chứng minh tam giác APQ cân
Cho tam giác ABC (A < 90 độ, AB > AC) Kẻ đường cao BM, CN của tam giác ABC (M thuộc AC, N thuộc AB).
a) Tam giác AMB có đồng dạng với tam giác ANC không? Vì sao?
b) Chứng minh MN . AC = BC . AN.
c)Trên AB lấy K sao cho BK = AC. E,F lần lượt là trung điểm của BC,AK. Chứng minh EF song song với tia phân giác Ax của BAC.
Cho tam giác ABC vuông tại A, có AB=3cm, AC=5cm. Trên AB lấy M sao cho BM=2cm, trên AC lấy N sao cho CN= 2cm. Gọi E,F,G,H lần lượt là trung điểm của MN,BM,BC,MC. Tính SEFGH
Bài 2: Cho tam giác ABC, trên tia đối của các tia BA, CB, AC lấy M, N, P sao cho BM =
BA, CN = CB, AP = AC. Chứng minh SMNP = 7SABC .
Bài 3: Cho tam giác ABC. Lấy điểm M, N, P lần lượt thuộc cạnh AC, AB, BC sao cho \(\frac{CM}{AC}=\frac{BF}{BC}=\frac{AN}{AB}=\frac{1}{3}\)
Gọi I là giao điểm của BM, CN. Gọi E là giao điểm của CN,
AP. Gọi F là giao điểm của AP, BM. Chứng minh : SEIF = SIMC + SFBP + SNEA
Bài 3 :Cho tam giác ABC. M, N tương ứng là trung điểm của các đoạn CA ; CB. I là
điểm bất kì trên đường thẳng MN( \(I\ne M,I\ne N\). )Chứng minh rằng trong ba tam giác
IBC, ICA, IAB có một tam giác mà diện tích của nó bằng tổng các diện tích của hai
tam giác còn lại.
Cho tam giác ABC. Trên hai cạnh AB, AC lấy hai điểm E, F sao cho EF ∥ BC. Gọi H, G lần lượt là hình chiếu vuông góc của E, F lên BC. Gọi M, N lần lượt là trung điểm của BC và đường cao AI. Chứng minh rằng BN đi qua trung điểm của EH và MN đi qua trung điểm của HF.