Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Đức Duy

Cho tam giác ABC. Kẻ BE vuông góc với AC, CF vuông góc với AB. Biết BE = CF = 8cm, độ dài BF và BC tỉ lệ 3 và 5
a, Chứng minh tam giác ABC cân
b, Tính cạnh BC
c, BE và CF cắt nhau tại O. Nối AO và EF. Chứng minh đường thẳng AO là trung trực của EF

Nhật Hạ
8 tháng 1 2020 lúc 16:17

A B C E F O

GT

 △ABC . BE ⊥ AC, CF ⊥ AB. BE = CF = 8 cm

 BF và BC tỉ lệ 3 và 5

 BE ∩ CF = {O} . Nối AO với EF

KL

 a, △ABC cân

 b, BC = ?

 c, AO là trung trực EF

Bài làm:

a, Xét △BFC vuông tại F và △CEB vuông tại E

Có: BC là cạnh chung

      CF = BE (gt)

=> △BFC = △CEB (ch-cgv)

=> FBC = ECB (2 góc tương ứng)

Xét △ABC có: ABC = ACB (cmt)

=> △ABC cân tại A

b, Gọi độ dài của cạnh BF và BC là a, b (cm, a, b > 0)

Theo bài ra, ta có: \(\frac{a}{3}=\frac{b}{5}\)\(\Rightarrow b=\frac{5a}{3}\)

Xét △FBC vuông tại F có: \(BC^2=BF^2+FC^2\)(định lý Pitago)

\(\Rightarrow b^2=a^2+8^2\)\(\Rightarrow\left(\frac{5a}{3}\right)^2=a^2+64\)\(\Rightarrow\frac{25}{9}.a^2-a^2=64\)

\(\Rightarrow a^2\left(\frac{25}{9}-1\right)=64\)\(\Rightarrow a^2.\frac{16}{9}=64\)\(\Rightarrow a^2=64\div\frac{16}{9}=36\)\(\Rightarrow a=6\)

\(\Rightarrow b=\frac{5}{3}a=\frac{5}{3}.6=10\)\(\Rightarrow BC=10\)(cm)

c, Vì △ABC cân tại A => AB = AC

Ta có: AB = AF + FB

          BC = AE + EC

Mà AB = AC (cmt) ; BF = EC (△BFC = △CEB)

=> AF = AE

=> A thuộc đường trung trực của FE   (1)

Ta có: DBC = FBE + EBC 

          ECB = ECF + FCB

Mà DBC = ECB (cmt); BCF = EBC (△BFC = △CEB)

=> FBE = ECF

Xét △BFO vuông tại F và △CEO vuông tại E

Có: FBO = ECO (cmt) 

     BF = CE (△BFC = △CEB)

=> △BFO = △CEO (cgv-gnk)

=> FO = OE (2 cạnh tương ứng)

=> O thuộc đường trung trực của FE   (2)

Từ (1) và (2) => đường thẳng AO là trung trực của EF.

Khách vãng lai đã xóa
Nguyễn Đức Duy
8 tháng 1 2020 lúc 19:38

thank bạn

Khách vãng lai đã xóa

Các câu hỏi tương tự
tống thị hồng nhung
Xem chi tiết
phan ngoc diep
Xem chi tiết
Lã Kim Ngân
Xem chi tiết
Trần Thị Hương
Xem chi tiết
Nguyễn Lê Trúc Quỳnh
Xem chi tiết
Minomoto Sakura
Xem chi tiết
nho thị mơ
Xem chi tiết
đức nguyễn
Xem chi tiết
Kinamoto Asaki
Xem chi tiết