Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Cho tam giác ABC, hai đường cao BE và CF cắt nhau tại H. Gọi D là điểm đối xứng của H qua trung điểm M của BC

c) Chứng minh tứ giác ABDC nội tiếp được đường tròn

Cao Minh Tâm
19 tháng 11 2019 lúc 10:49

Đề kiểm tra Toán 9 | Đề thi Toán 9

c) Xét tứ giác BHCD có:

M là trung điểm của 2 đường chéo HD và BC

⇒ Tứ giác BHCD là hình bình hành

Đề kiểm tra Toán 9 | Đề thi Toán 9

Mà BE ⊥ AC ; FC ⊥ AB

⇒ CD ⊥ AC ; DB ⊥ AB

Xét tứ giác ABDC có:

∠(ABD) = ∠(ACD) =  90 0

∠(ABD ) + ∠(ACD) =  180 0

⇒ Tứ giác ABDC nội tiếp được đường tròn

Thuy Nguyen
17 tháng 3 2021 lúc 20:41

c)Cm:tứ giác ABDC nt đường tròn

Hình tự vẽ nha

Xét tg HBDC,có:

HM=MD(gt)

BM=MC(gt)

Mà M là gđ của HD và BC 

Suy ra:tg HBDC là hbh

Suy ra: BHC=BDC(tc hbh)

Ta có:FHE=BHC(đối đỉnh)

Suy ra:BDC=FHE (1)

Xét tg AFHE,có:

AFH + AEH=90°+90°=180°

Mà 2 góc ở vị trí đối nhau

Suy ra:tg AFHE nội tiếp

Suy ra:FAE +FHE=180° (2)

Từ (1)và(2)suy ra:BAC+BDC=180°

Mà 2 góc ở vị trí đối nhau

Suy ra:tgABDC nội tiếp đường tròn(đpcm)

Mong mn thông cảm, viết góc vào hộ mình nha,cảm ơn

Chúc mn học tốt!


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Phúc Nguyễn Hoàng
Xem chi tiết
9D-21-Bùi Quang Khải-ĐH
Xem chi tiết
Hoàng Thiên Ân
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Nguyễn Vinh
Xem chi tiết
Dza Trùng Tên
Xem chi tiết
Đinh Thị Ngọc Anh
Xem chi tiết
Pham Trong Bach
Xem chi tiết