Cho điểm O nằm trong tam giác ABC. Các tia AO, BO, CO cắt các cạnh của tam giác ABC lần lượt tại A', B', C'.
a) Chứng minh: \(\frac{OA'}{AA'} + \frac{OB'}{BB'} + \frac{OC'}{CC'} = 1.\)
b) Cho M=\(\frac{OA}{OA'} + \frac{OB}{OB'} + \frac{OC}{OC'}\) . Tìm GTNN của M
Cho tam giác ABC . gọi O là một điểm nằm trong tam giác đó . Vẽ OA,OB,OC cắt BC,AC,AB lần luotj tai A' , B' , C' .
Chứng minh rằng :\(\frac{OA'}{AA'}+\frac{OB'}{BB'}+\frac{OC'}{CC'}=1\)
CÁC BẠN GIÚP MÌNH NHANH NHA , MAI PHẢI NỘP RỒI . THANK YOU :)
cho điểm O nằm trong tam giác ABC . các tia AO , BO, CO cắt các cạnh của tam giác ABC thứ tự tại A' , B', C' chứng minh \(\frac{OA'}{AA'}\)+\(\frac{OB'}{BB'}\)+\(\frac{OC'}{CC'}\)= 1
cho O nằm trong tam giác ABC. các tia AO,BO,CO cắt các cạnh đáy tam giác ABC thứ tự tại A',B',C'. chứng minh
\(\frac{OA'}{AA'}+\frac{OB'}{BB'}+\frac{OC'}{CC'}=1\)
cho điểm O thuộc miền tam giác ABC. các tia OA,OB,OC cắt các cạnh của tam giác ABC lần lượt tại A',B',C'. chứng minh rằng
a) \(\frac{OA'}{AA'}+\frac{OB'}{BB'}+\frac{OC'}{CC'}=1\)
Cho tam giác ABC và O là một điểm bất kì trong tam giác. Các tia AO, Bo, Co cắt các cạnh BC, CA, AB thứ tự tại các điểm P, Q, R.
Chứng minh \(\frac{OA}{OP}.\frac{OB}{OQ}.\frac{OC}{OR}\ge8\)
Cho tam giác ABC ,O là điểm nằm trong tam giác. Các tia AO, BO, CO lần lượt cắt BC, AC, AB tại D,E,F. Chứng minh rằng:
\(\frac{OA}{AD}+\frac{OB}{BE}+\frac{OC}{BF}=2\)
cho tam giác ABC và O là một điểm bất kì trong tam giác. Các Tia AO, BO, CO cắt các cạnh BC, CA, AB thứ tự tại các điểm P, Q, R. Chứng minh \(\frac{OA}{OP}\times\frac{OB}{OQ}\times\frac{OC}{OR}\ge8\)
Cho điểm O nằm trong tam giác ABC. Các tia AO, BO, CO cắt các cạnh của tam giác ABC theo thứ tự tại A', B, C'.
a) Cmr: \(\frac{OA}{AA'}+\frac{OB}{BB'}+\frac{OC}{CC'}=1\)
b) Cho \(M=\frac{OA}{OA'}+\frac{OB}{OB'}+\frac{OC}{OC'}.\) Tìm giá trị nhỏ nhất của M.
Chúc các bạn học tốt! Cảm ơn nhiều! ^-^