Cho tam giác ABC. Gọi M, N, P theo thứ tự là trung điểm của BC, CA, AB. Các đường trung trực của tam giác gặp nhau tại O. Các đường cao AD, BE, CF gặp nhau tại H. Gọi I, K, R theo thứ tự là trung điểm của HA, HB, HC
a) Chứng minh: HO và IM cắt nhau tại Q là trung điểm của mỗi đoạn.
b) Chứng minh: QI = QM = QD = OA/2
c) Hãy suy ra các kết quả tương tự như kết quả ở câu b.
a) PK là đường trung bình tam giác ABH nên IH = PK
MK song song CP nên cũng song song OP, lại có OM song song PK nên OMKP là hình bình hành, => OM = PK vậy IH = OM
Từ đó OMHI là HBH, => đpcm
b) IH = AI nên AOMI cũng là hình bình hành, suy ra OA = MI
Tam giác DMI vuông có Q là trung điểm IM => đpcm