cho tam giác abc. gọi e, f lần lượt là trung điểm của ab, ac. trên tia đối của tia fb lấy p sao cho pf = bf. trên tia đối của tia ec lấy điểm q sao cho qe = ce. a) chứng minh a là trung điểm của pq. b) chứng minh bq // ac và cp // ab. c) gọi r là giao điểm của hai đường thẳng pc và qb. chứng minh chu vi tam giác pqr bằng hai lần chu vi tam giác abc. d) chứng minh ar, bp,cq đồng quy tại một điểm.
giup mik gap voi :((((((((((((
a) Xét tam giác AEQ và tam giác BEC có
EQ=EC
AEQ=BEC đối đỉnh
EA=EB
=> tam giác AEQ = tam giác BEC(c.g.g).
=> AQ=BC(cạnh tuognư ứng). (1)
Xét Tam giác AFP và tam giác CFB có
AF=CF
AFP=CFB đối đỉnh
FB=FP
=> tam giác AFB = tam giác CFB(c.g.c)
=> AP = BC (2)
từ (1) và (2) suy ra AP=AQ.
a) Xét tam giác AEQ và tam giác BEC có
EQ=EC
AEQ=BEC đối đỉnh
EA=EB
=> tam giác AEQ = tam giác BEC(c.g.g).
=> AQ=BC(cạnh tuognư ứng). (1)
Xét Tam giác AFP và tam giác CFB có
AF=CF
AFP=CFB đối đỉnh
FB=FP
=> tam giác AFB = tam giác CFB(c.g.c)
=> AP = BC (2)
từ (1) và (2) suy ra AP=AQ.
=> đề
c)
xét tam giác BEQ và tam giác AEC có
EQ=EC
BEQ=AEC đối đỉnh
EB=EA
=> tam giác BEQ = tam giác AEC(c.g.c)
=> BQE=AEC (góc tương ứng)
mà chúng ở vị trí so le trong nên BQ//AC.
xét tam giác PFC và BFA có:
FA=FC
AFB=CFP
BF=PF
=> tam giác PFC = BFA (c.g.c)
=> FAB = FCB(góc tương ứng)
mà chúng ở vị trí so le trong nên
Còn lại tra link này tự tìm :)) : https://lazi.vn/edu/exercise/cho-tam-giac-abc-goi-e-f-lan-luot-la-trung-diem-cua-ab-ac-tren-tia-doi-cua-fb-lay-p-sao-cho-fp-fb-tren