Bài 1: Tam giác ABC. Gọi D,E lần lượt là trung điểm của BC,AC,AB. Lấy I,K thuộc BC sao cho BI=IK=KC. Gọi M là giao điểm AI và DF, N là giao điểm AK và DE. Cmr: MN//BC
Bài 2: Cho góc nhọn xOy. Trên tia Ox lấy A,B (A thuộc OB), và trên tia Oy lấy C,D (C thuộc OD). Gọi M,N,P,Q lần lượt là trung điểm của AC,AD,BD,BC. Cho góc xOy=90 độ, so sánh MP và NQ.
Bài 3: Cho đoạn thẳng AB, lấy M bất kì thuộc AB. Trên cùng một nmp bờ AB vẽ các tam giác đều AMC<BMD. Gọi E,F,I,K lần lượt là trung điểm của CM,CB,DM,DA. Cmr:
a. EF//KI. b.EI=KF; c.KF=CD/2
Bài 4:Cho tam giác ABCD. Trên tia đối tia BA lấy D, trên tia đối tia CA lấy E sao cho BD=CE. Gọi M,N,P,Q lần lượt là trung điểm của BC,DE,BE,CD. Cmr:
a. tan giác PMQ cân; b.MN vuông góc với PQ; c. Gọi Ax là tia phân giác góc BAC, Cm: Ax//MN
Cảm ơn các bạn giúp mình nhiều, Cảm ơn ạ!!
cho tam giác ABC . trên tia dối của tia AB,AC lần lượt lấy các điểm D và E sao cho AD=AE và AE=AC . chứng minh DE song song BC. gọi M,N lần lượt là trung điểm của BC và DE . chứng minh A là trung điểm của MN
1) Cho tam giác cân ABC (AB=AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M,N. DM=EN, đường thẳng BC cắt MN tại trung điểm I của MN. Chứng minh rằng: đường thẳng vuông góc vs MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.
2)Cho tam giác ABC vuông tại A, K là trung điểm của cạnh BC. Qua K kẻ đường thẳng vuông góc vs AK, đường này cắt các đường thẳng AB và AC lần lượt ở D và E. Gọi I là trung điểm của DE.
a)Chứng minh rằng: AI vuông góc vs BC
b) Có thể nói DE nhỏ hơn BC được không? Vì sao?
3) Cho tam giác ABC (AB>AC), M là trung điểm của BC. Đường thẳng đi qua M và vuông góc vs tia phân giác của góc A tại H cắt hai tia AB, AC lần lượt tại E và F. CMR:
a) EF^2/4 +AH^2=AE^2
b) 2BME=ACB-B
c) BE=CF
4)Cho tam giác ABC có góc B và C là 2 góc nhọn. Trên tia đối của tia AB lấy điểm D sao cho AD=AB, trên tia đối của tia AC lấy điểm E sao cho AE=AC. M là trung điểm của BE, N là trung điểm CB. Ax là tia bất kỳ nằm gưac 2 tia AB và AC. Gọi H, K lần lượt là hình chiếu của B và C trên tia Ax. Xác định vị trí của tia Ax để tổng BH+CK có giá trị lớn nhất.
5)Cho tam giác ABC có 3 góc nhọn, đường cao AH, ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông
góc vs AH (M,N thuộc AH)
a) CM: EM+HC=NH
b) CM: EN // FM
Cho tam giavs ABC. Gọi E,F lần lượt là trung điểm các cạnh AB,AC. Trên tia đối của tia FB lấy điểm N sao cho FN=FB. Trên tia đối của tia EC lấy điểm M sao cho EM=MC. Chứng minh:
a)tam giác AEM=tam giác BEC
b)AM=BC và AM song song BC
c)A,M,N thảng hàng
d)A là trung điểm của đoạn thẳng MN
6. Cho tam giác ABC, các điểm E và F lần lượt là trung điểm của các cạnh AB và AC. Trên tia đối của tia FB lấy điểm N sao cho FN = FB. Trên tia đối của tia EC lấy điểm M sao cho EM = EC. Chứng minh: a. AB // NC; AC // MB b. ∆ AEM = ∆ BEC; ∆ AFN = ∆ CFB c. Ba điểm M, A, N thẳng hàng d. A là trung điểm của MN.
Bài 1: Cho tam giác ABC cân tại A có đường phân giác CD. Qua D kẻ tia DF vuông góc với DC; DE song song với BC ( F thuộc BC; E thuộc AC ). Gọi M là giao điểm của DE với tia phân giác của góc BAC. CMR:
1) CF= 2BD
2) DM= 1/4 CF
Bài 2: Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc BC kẻ từ D và E cắt AB và AC lần lượt ở M và N. CMR:
1) DM=EN
2) Đường thẳng BC cắt MN tại I là trung điểm của MN
3) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC
Bài 3: Cho tam giác ABC nhọn. Về phía ngoài của tam vẽ các tam giác vuông cân ABD và ACE đều vuông tại A. Gọi M và N lần lượt là trung điểm của BD và CE, P là trung trung điểm của BC. CMR: Tam giác PMN vuông cân
Cho tam giác ABC có E, F lần lượt là trung điểm các cạnh AB và AC. Trên tia đối của tia EC lấy điểm M sao cho EM = EC; trên tia đối của tia FB lấy điểm N sao cho FN=FB
a. CM AM // BC
b. CM 3 điểm A, M, N thẳng hàng
Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AB=AD. Lấy điểm E sao cho A là trung điểm của CE.
a) Chứng minh DE//BC
b) Gọi M,N lần lượt là trung điểm của BC,DE. Chứng minh A là trung điểm của MN.
c) Chứng minh AM//BE và BE=2AM.
Bài 1: Cgo tam giác ABC, trên các tia đối của các tia AB, AC lần lượt lấy các điểm D và E sao cho AD = AB, AE = AC. Gọi M, N lần lượt là trung điểm của BC và DE. Chứng minh A là trrung điểm của MN
Bài 2: Cho góc nhọn xOy, trên tia Ox lấy 2 điểm A và B sao cho OA<OB. Trên tia Oy lấy 2 điểm C và D sao cho OC = OB, OD = OA. Hai đoạn thẳng AC và BD cắt nhau tại E. Chứng minh tam giác EAB = tam giác EDC
Bài 3: Cho tam giác ABC, AB<AC. Gọi M là trung điểm của BC. Vẽ BH vuông góc với AM, CK vuông góc với AM. Chứng minh rằng BH = CK