Vẽ góc ngoài CAx của ∆ABC tại đỉnh A
Ta thấy HAx là góc ngoài ∆BAH
=> hAx = ABH + AHB = ABC + 90°
=> HAx = 2( ABD + 45°) (1)
Vì CAx là góc ngoài ∆BAD
=> CAx = ABD + BDA = ABD + 45° (2)
Từ (1) và (2)
=> CAx = \(\frac{1}{2}\)HAx
=> AC là phân giác HAx
Xét ∆ABH ta có :
BD là phân giác trong
AD là phân giác ngoài
=> HD là phân giác AHC
=> AHD = \(\frac{1}{2}AHC=45°\)(3)
Xét ∆BAH ta có :
AHB + ABH + BAH = 180°
=> BAH = 45° (4)
Từ (3) và (4) ta có :
=> AHB = BAH = 45°
Mà 2 góc này ở vị trí so le trong
=> HD//AB