Về phía ngoài \(\Delta\)ABC dựng tam giác đều ACE.
Ta có: ^ACB + 600 = ^ACB + ^BCD = ^ACB + ^ACE => ^ACD = ^ECB.
Xét \(\Delta\)DAC và \(\Delta\)BEC: DC = BC, ^ACD = ^ECB, AC = EC
=> \(\Delta\)DAC = \(\Delta\)BEC (c.g.c) => AD = EB (2 cạnh tương ứng).
Lại có: ^BAE = ^BAC + ^CAE = 900. Áp dụng ĐL Pytagore cho \(\Delta\)ABE vuông tại A:
EB2 = AB2 + AE2 . Thay AD = EB (cmt) và AE = AC (Vì \(\Delta\)ACE đều) ta được: AD2 = AB2 + AC2 (đpcm).
Xét tam giác ABD và tam giác FBC có:
AB=FB ( cạnh tam giác đều FAB)
DB=BC ( cạnh tam giác đều DBC)
góc ABD = góc FBC ( cùng bằng góc ABC + 60 độ)
Suy ra tam giác ABD = tam giác FBC (c.g.c)
=> FC=AD
Lại có góc FAC = FAB + BAC = 90 độ
=> FC^2=FA^2+AC^2
<=> FC^2 = AB^2 + AC^2 (vì FA=AB, 2 cạnh tam giác đều)
<=> DA^2=AB^2 + AC^2 (đpcm)