cho tam giác ABC nhọn , các đường cao BD và CE cắt nhau tại H . Đường vuông góc AB tại B và đường vuông góc với AC tại C cắt nhau tại K . Gọi M là trung điểm của BC . Chứng minh
a , Chứng minh ADB∼ΔAEC và ΔAED ~ΔACB
d, AH cắt BC tại O . Chứng minh : BE . BA + CD . CA = BC2
g, cho góc ACB = 45o , gọi P là trung điểm của DC . Từ D kẻ đường thẳng vuông góc với BP tại I và cắt CK tại N . Tìm tỉ số diện tích của tứ giác CPIN và diện tích tam giác DCN
h, tam giác ABC có điềm kiện gì thì tứ giác BHCK là hình thoi ? Hình chữ nhật ?
Cho tam giác ABC , các đường cao BD và CE cắt nhau tại H . Đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau tại K . Gọi M là trung điểm của BC . Chứng minh rằng :
a) ΔADE \(\sim\) ΔAEC, ΔAED \(\sim\) ΔACB
Cho tam giác ABC nhọn, các đường cao BD và CE cắt nhau tại H. Đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau tại K. Gọi M là trung điểm BC. AH cắt BC tại O. CMR: H là giao điểm các đường phân giác của tam giác ODE.
Cho ABC nhọn, các đường cao BD, CE cắt nhau tại H. Đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau tại K. a, Chứng minh AH BC. b, Chứng minh tứ giác BHCK là hình bình hành. c, Gọi I là trung điểm của AK, M là trung điểm của BC. Chứng minh ba điểm H, M, K thẳng hàng
Cho tam giác ABC, các đường cao BD, CE cắt nhau tại H. Đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau ở K. Gọi M là trung điểm BC.
a/ chứng minh tam giác ADB đồng dạng tam giác AEC
b/ chứng minh HE. HC = HD. HB
Cho tam giác ABC, các đường cao BD, CE cắt nhau tại H. Đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau ở K. Gọi M là trung điểm BC.
a/ chứng minh tam giác ADB đồng dạng tam giác AEC
b/ chứng minh HE. HC = HD. HB
Cho tam giác ABC có 3 góc nhọn, các đường cao BD,CE của tam giác cắt nhau tại H. Chứng minh rằng :
a) Tam giác ABD đồng dạng với tam giác ACE.
b) HE.HC=HD.HB.
c) Kẻ đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau tạ K. Gọi M là trung điểm của BC. Chứng minh: Ba điểm H,M,K thẳng hàng.
Cho tam giác ABC, các đường cao BD và CE cắt nhau tại H. Đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau tại K. Gọi M là trung điểm của BC. Chứng minh rằng:
a. Tam giác ADB ~ tam giác ACE, tam giác AED~tam giác ACB
b. HE.HC=HD.HB
c. H,M,K thẳng hàng
Cho tam giác ABC, các đường cao BD và CE cắt nhau tại H. Đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau tại K. Gọi M là trung điểm của BC. Chứng minh rằng:
a. Tam giác ADB ~ tam giác ACE, tam giác AED~tam giác ACB
b. HE.HC=HD.HB
c. H,M,K thẳng hàng