1. Cho đường tròn tâm O đường kính AB. Qua B kẻ tiếp tuyến d(M khác B),AM cắt đường tròn tại C(C khác A).Kẻ CH vuông góc với AB tại H.
a. Cm CH//MB
b. Cm BC vuông góc với AM và MA.MC=MB2
c. Qua O kẻ đường thẳng vuông góc với BC tại K cắt MB tại I.Chứng minh IC là tiếp tuyến tại C của đường tròn(O)
d. Tứ giác OBIC là hình gì khi diện tích tam giác ABC đạt giá trị lớn nhất.
2.Cho đường tròn tâm O đường kính AB=2R.Từ trung điểm H của đoạn OB kẻ đường thẳng vuông góc với AB cắtđường tròn tâm O tại C và D.
a. Chứng minh HC=HD và tứ giác ODBC là hình thoi.
b. Tính số đo góc BOC.
c. Gọi M là điểm đối xứng của O qua B. Chứng minh MC là tiếp tuyến tại C của đường tròn (O).Tính MC theo R.
d. Qua O kẻ đường thẳng vuông góc với OC cắt CD ở I. Chứng minh: HI.HD+HB.HM=R2
Cho tam giác ABC không có góc tù (AB<AC), nội tiếp đường tròn (O;R).(B,C cố định, A di chuyển trên cung lớn BC). Các tiếp tuyến B và C cắt đường tròn tại M. Từ M kẻ đường thẳng song song với AB, đường thẳng này cắt (O) tại D và E thuộc cung nhỏ BC), cắt BC tại F, cắt AC tại I
a) Chứng minh rằng : góc MBC = góc BAC
b) Chứng minh FI.FM=FD.FE
c) Đường thẳng OI cắt (O) tại P và Q (P thuộc cung nhỏ AB). Đường thẳng QF cắt (O) tại T(T khác Q), chứng minh ba điểm thẳng hàng P,T,M thẳng hàng
d)Tìm vị trí A trên cung lớn BC sao cho tam giác IBC có diện tích lớn nhất
Cho đường tròn O và điểm A nằm ngoài đường tròn. Qua A kẻ hai đường thẳng cắt đường tròn tại các điểm B,C và D,E tương ứng (B nằm giữa A và C, D nằm giữa A và E). Đường thẳng qua D và song song với BC cắt đường tròn tại điểm F. Đường thẳng AF cắt đường tròn tại điểm G. Hai đường thẳng EG và BC cắt nhau tại M. CMR:
a, AM/MG=ME/AM
b, 1/AM=1/AB+1/AC
Cho tam giác nhọn ABC (AB<AC) nội tiếp đường tròn (O) và ngoại tiếp đường trong (I). Điểm D thuộc cạnh AC sao cho ABD=ACB. Đường thẳng AI cắt đường tròn ngoại tiếp tam giác DIC tại E và đường tròn (O) tại Q. Đường thẳng tại E song song với AB cắt BD tại F
a/ Chứng minh tam giác QIB cân
b/ Chứng minBP*BI=BE*BQ
Cho tam giác ABC vuông tại A (AB<AC). Kẻ đường cao AH của tam giác ABC. Gọi D và E lần lượt là hình chiếu của H trên AB và AC.
a) Biết AB=6cm và HC=6,4cm. Tính AC và BC.
b) CMR: \(DE^3=BC.BD.CE\)
c) Đường thẳng qua B vuông góc với BC cắt HD tại M; đường thẳng qua C vuông góc với BC cắt HE tại N. Chứng minh: M, A, N thẳng hàng
d) CM: Ba đường thẳng BN, CM, DE đồng quy
Cho tam giác ABC vuông tại A (AB<AC). Kẻ đường cao AH của tam giác ABC. Gọi D và E lần lượt là hình chiếu của H trên AB và AC.
a) Biết AB=6cm và HC=6,4cm. Tính AC và BC.
b) CMR: \(DE^3=BC.BD.CE\)
c) Đường thẳng qua B vuông góc với BC cắt HD tại M; đường thẳng qua C vuông góc với BC cắt HE tại N. Chứng minh: M, A, N thẳng hàng
d) CM: Ba đường thẳng BN, CM, DE đồng quy
Cho tam giác ABC có \(\widehat{BAC}=60^o\), AC=b, AB=c(b>c). Đường kính EF của đường tròn ngoại tiếp tam giác ABC \(\perp BC\) tại M( E thuộc cung lớn BC).Gọi I và J là chân đường vuông góc hạ từ E xuống đường thẳng AB và AC.Gọi H và K là chân đường vuông góc kẻ từ F xuống các đường thẳng AB và AC.
a/ C/m các tứ giác AIEJ, CMJE nội tiếp và EA.EM=EC.EI.
b/C/m I,J,M thẳng hàng và IJ vuông góc với HK
c/ Tính độ dài BC và bán kính đường tròn ngoại tiếp tam giác ABC theo b,c.
(Mình chỉ cần câu b và c thôi nha!) @phynit, @Akai Haruma, @tran nguyen bao quan
Cho tam giác ABC nhọn AB<AC kẻ đường cao AH. Đường tròn tâm O đường kính AH cắt AB,AC tại D,E. Đường thẳng DE cắt BC tại S.
a) C/m: BDEC là tứ giác nội tiếp
b) C/m: SB.SC=SH2
c) Đường thẳng SO cắt AB,AC lần lượt tại M, N. Đường thẳng DE cắt HM, HN lần lượt tại P,Q. C/m: BP, CQ, AH đồng quy mk chỉ cần câu c thôi, dùng Menelauyt nhégiúp mình ý 1 (cm vuông góc) với ý 3 thôi ạ: Cho tam giác ABC có ba góc nhọn (AB < AC) nội tiếp đường tròn (O;R). Ba đường cao AD, BE, CF cắt nhau tại H.
1. Chứng minh bốn điểm B, F, E, C cùng thuộc một đường tròn.CHỨNG MINH AO VUÔNG GÓC VỚI FE
2. Đường thẳng EF cắt đường thẳng BC tại K. Chứng minh rằng: KE.KF = KB.KC.
3. Chứng minh 3 điểm M, H, I thẳng hàng