Gọi \(H,K\) lần lượt là hình chiếu vuông góc của \(E,F\) lên \(BC.\) Vì tam giác \(ABC\) đều và \(ME\parallel BC,MF\parallel CA\to\Delta AEM,\Delta MFB\) đều. Do đó \(H,K\) là trung điểm của \(MA,MB.\) Suy ra \(HK=\frac{1}{2}AB.\)
Xét hình thang vuông \(HEFK\) có \(EF\ge HK=\frac{1}{2}AB.\) Dấu bằng xảy ra khi và chỉ khi \(EF\parallel AB.\) Khi đó \(\Delta CEF\) đều nên \(MECF\) là hình thoi. Đặc biệt ta có \(MC\perp EF\to MC\perp AB\to M\) là trung điểm \(AB.\)
Vậy giá trị bé nhất của \(EF\) là \(\frac{1}{2}AB\), đạt được khi và chỉ khi \(M\) là trung điểm \(AB.\)