a: vẽ vecto CN=vecto AB
(vecto AB;vecto CA)=(vecto CN;vecto CA)=góc ACN=120 độ
b: (vecto AB;vecto MC)
=(vecto CN;vecto CH)
=góc NCH
=120 độ
a: vẽ vecto CN=vecto AB
(vecto AB;vecto CA)=(vecto CN;vecto CA)=góc ACN=120 độ
b: (vecto AB;vecto MC)
=(vecto CN;vecto CH)
=góc NCH
=120 độ
1. cho tam giác ABC đều , G là trọng tâm . Xác định góc giữa các vecto sau : \(\left(\overrightarrow{AB},\overrightarrow{AC}\right)\) , \(\left(\overrightarrow{AB},\overrightarrow{CA}\right)\) , \(\left(\overrightarrow{BA},\overrightarrow{AG}\right)\) , \(\left(\overrightarrow{GA},\overrightarrow{GC}\right)\) , \(\left(\overrightarrow{BG},\overrightarrow{AC}\right)\)
Cho tam giác ABC đều cạnh a. G là trọng tâm. Tính góc giữa \(\overrightarrow{AG}\) và\(\overrightarrow{GB}\). Góc giữa \(\overrightarrow{AB}\) và \(\overrightarrow{BC}\). Tính tích vô hướng \(\overrightarrow{AG}.\overrightarrow{GB}\)
Cho tam giác ABC vuông tại A có AB=a , BC =2a .Gọi M ,N lần lượt là trung điểm của AC , BC .
a) Tính số đó các góc của tam giác ABC .
b) Xác định các góc( \(\overrightarrow{AB},\overrightarrow{MN}\)),
(\(\overrightarrow{MN},\overrightarrow{MB}\)) , (\(\overrightarrow{AB},\overrightarrow{BC}\)) ,( \(\overrightarrow{NM},\overrightarrow{BC}\))
c) Tính tích vô hướng : \(\overrightarrow{AB}.\overrightarrow{AC},\overrightarrow{BC.}\overrightarrow{AC},\overrightarrow{MN.}\overrightarrow{BC},\overrightarrow{BN}.\overrightarrow{AC},\overrightarrow{AN.}\overrightarrow{BC}\)
Cho tam giác ABC có AB=5, BC=7,AC=8
a) Từ đẳng thức \(\overrightarrow{AC}-\overrightarrow{AB}=\overrightarrow{BC}\) ,Chứng minh công thức \(2\overrightarrow{AB}.\overrightarrow{AC}=\) AB2+AC2-BC2
Tính \(\overrightarrow{AB}.\overrightarrow{AC}\) , rồi suay ra giá trị của góc A
b) Tính \(\overrightarrow{CA}.\overrightarrow{CB}\)
Trong mặt phẳng Oxy cho A(4;-5) , B(1;6) , C(-3;2)
a) Tìm tọa độ trọng tâm của tam giác ABC, tính \(\overrightarrow{AB}.\overrightarrow{AG}\) và \(cos\left(\overrightarrow{AB}.\overrightarrow{AG}\right)\)
cho tam giác ABC vuông tại A, biết \(\overrightarrow{AB}.\overrightarrow{CB}=4;\overrightarrow{AC}.\overrightarrow{BC}=9\) .Tìm AB,AC,BC
Cho hình vuông ABCD cạnh a . Tính giá trị các biểu thức sau:
a) \(\overrightarrow{AB}.\overrightarrow{AC}\)
b)\(\left(\overrightarrow{AB}+\overrightarrow{AD}\right)\left(\overrightarrow{BD}+\overrightarrow{BC}\right)\)
c)\(\overrightarrow{AB}.\overrightarrow{BD}\)
d) \(\left(\overrightarrow{AC}-\overrightarrow{AB}\right)\left(2\overrightarrow{AD}-\overrightarrow{AB}\right)\)
e) \(\left(\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}\right)\left(\overrightarrow{DA}+\overrightarrow{DB}+\overrightarrow{DC}\right)\)
Cho hình chữ nhật ABCD tâm O. AB=a, AD= 2a và E là trung điểm AD
a) C/m: \(\overrightarrow{EA}+\overrightarrow{EB}+2\overrightarrow{EC}=3\overrightarrow{AB}\)
b) C/m: \(2\overrightarrow{EA}+\overrightarrow{EB}+4\overrightarrow{ED}=\overrightarrow{EC}\)
c) M là trung điểm trên CD. Xác định M để: \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}\right|\)min
d) Gọi F là điểm trên AC. Tìm GTNN của biểu thức:
P=\(\left|\overrightarrow{FA}+\overrightarrow{FB}-\overrightarrow{FC}\right|\)
Cho các vecto \(\left|\overrightarrow{a}\right|=x,\left|\overrightarrow{b}\right|=y,\left|\overrightarrow{z}\right|=c\) và vecto a+b+3c=0. Tính \(A=\overrightarrow{a}.\overrightarrow{b}+\overrightarrow{b}.\overrightarrow{c}+\overrightarrow{c}.\overrightarrow{a}\)