Cho tam giác ABC nội tiếp đường tròn tâm (O;R). gọi I là điểm bất kì nằm trong tam giác ABC.(I ko thuộc cạnh của tam giác). Các tia AI,BI,CI lần lượt cắt BC,AC,AB tạiM,N,P. chứng minh AI/AM + BI/BN + CI/CP = 2
Cho tam giác ABC nội tiếp đường tròn (O) và I là điểm nằm trong tam giác. Tia AI,BI,CI cắt BC,CA,AB lần lượt tại D,E,F. Gọi M,N,P lần lượt là trung điểm của AD,BE,CF. X,Y,Z thứ tự là hình chiếu của O lên EF,DE,DF. CMR: Đường tròn ngoại tiếp các tam giác XNP, YMP, ZMN đồng quy ?
Bài 1: cho đường tròn (O;R) có dấy BC cố định. Một điểm A di động trên cung lớn BC. Gọi I là giao điểm 3 đường phân giác trong của tam giác ABC. Các tia AI,BI,CI cắt (O) lần lượt tại điểm thứ hai D,E,F. DE,DF cắt AB,AC theo thứ tự tại M,N. Chứng minh 3 điểm M,I,N thẳng hàng
Bài 2: Cho tam giác ABC nội tiếp đường tròn (O). Tiếp tuyến tại B và C với (O) cắt nhau tại M, đường thẳng AM cắt (O) tại N. Gọi P,Q lần lượt là giao điểm của đường thẳng vuông góc với NC tại C với (O) và BN. AP cắt BC tại E. MO cắt PQ ở D. Chứng minh:
1) tứ giác AMBD nội tiếp
2) Ba điểm M,Q,E thẳng hàng
Cho tam giác ABC và điểm O nằm trong tam giác đó (O không nằm trên các cạnh tam giác). Điểm M nằm trên tia OA (M khác O,A) sao cho đường tròn ngoại tiếp tam giác ABM cắt tia OB tại giao điểm thứ 2 là N; đường tròn ngoại tiếp tam giác ACM cắt tia OC tại giao điểm thứ 2 là P. Gọi I,J lần lượt là tâm đường tròn ngoại tiếp các tam giác ABC, MNP. Lấy E đối xứng với N qua OI. CMR: M,E,P,N cùng thuộc một đường tròn.
Giúp mình với! Cảm ơn!
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Hai đường cao AK và CI của tam giác ABC cắt nhau tại H (K thuộc BC, I thuộc AB).
a) Chứng minh rằng: góc BAK bằng góc BCI.
b) Gọi M là điểm bất kì trên cung nhỏ BC. Các điểm N, P lần lượt là điểm đối xứng với M qua AB, AC. CMR: Tứ giác AHCP nội tiếp đường tròn.
c) Tìm vị trí điểm M để độ dài đoạn thẳng NP lớn nhất.
Cho tam giác ABC nội tiếp đường tròn (O), góc A < 90°. Các đường phân giác trong cắt nhau tại I. Các đường thẳng AI, BI, CI lần lượt cắt đường tròn tại M, N, P. Chứng minh:
a) Tam giác NIC cân tại N
b) I là trực tâm tam giác MNP
c) Gọi E là giao điểm của MN và AC, F là giao điểm của PM và AB. Chứng minh 3 điểm E, I, F thẳng hàng
d) Gọi K là trung điểm BC, giả sử BI ⊥ IK, BI = 2IK. Tính góc A của tam giác ABC
1) Cho (O) và (I) lần lượt là đường tròn ngoại tiếp và đường tròn nội tiếp của tam giác ABC. Tia AI cắt (O) tại D, tia BI cắt (O) tại E, tia CI cắt (O) tại F (D khác A, E khác B, F khác C). Chứng minh rằng:
AD + BE + CF > AB + BC + CA
2) Cho tam giác cân ABC nội tiếp trong đường tròn (O;R) (AB = AC và BAC = 300). Gọi D là điểm thuộc cung nhỏ AB sao cho cung BD = 300, E là điểm thuộc cung nhỏ AC sao cho DE = AB và EA < EC, DE cắt AB và AC lần lượt tại M và N. Tính: AB và AM theo R.
Cho tam giác nhọn ABC nội tiếp đường tròn (O; R). Gọi M, I lần lượt là trung điểm của BC và AC. Giả sử O nằm trong tam giác AMC hay O thuộc AC. CMR:
a, Chu vi tam giác IMC lớn hơn 2R
b, Chu vi tam giác ABC lớn hơn 4R
cho tam giác đều ABC nột tiếp đường tròn (O,R) .Gọi M là điểm trên cung nhor AC Hạ BK vuông góc AM tại K. Đường thẳng BK cắt CM tại E. BE cắt đường tròn (O,R ) tại N (N #B)
1. Chứng minh tam giác MBE cân tại M
2, Tính R độ dài cung nhỏ MN
3. Tìm vị trí M để tam giác MBE có chu vi lớn nhất