Cho tam giác ABC đều.Gọi D là điểm đối xứng của C qua AB.Vẽ đường tròn tâm D qua A, B và M là điểm bất kì trên đường tròn đó M ≠ A , M ≠ B Khẳng định nào sau đây đúng?
A. Độ dài MA; MB; MC là độ dài ba cạnh của một tam giác vuông.
B. MA, MB, MC là ba cạnh của 1 tam giác vuông.
C. MA= MB= MC
D. MC> MB> MA
Cho ba điểm A(4; 3), B(2; 7) và C(-3; -8).
a, Tìm tọa độ trọng tâm G và trực tâm H của tam giác ABC;
b, Gọi T là tâm đường tròn ngoại tiếp tam giác ABC. Chứng minh T, G và H thẳng hàng.
c, Viết phương trình đường tròn ngoại tiếp tam giác ABC.
Cho tam giác ABC có trực tâm là H, và O là tâm đường tròn ngoại tiếp tam giác ABC Gọi B' là điểm đối xứng với B qua O . CMR véc tơ AH= véc tơ B'C
Cho tam giác không cân ABC. Gọi H, O lần lượt là trực tâm, tâm đường tròn ngoại tiếp của tam giác, M là trung điểm của cạnh BC. Khẳng định nào sau đây là đúng?
A. Tam giác ABC nhọn thì A H → , O M → cùng hướng
B. A H → , O M → luôn cùng hướng
C. A H → , O M → cùng phương nhưng ngược hướng
D. A H → , O M → có cùng giá
Cho tam giác ABC có A(1; 2), B(–2; 6), C(9; 8).
a Tính . Cm tam giác ABC vuông tại A.
b Tìm tâm và bán kính đường tròn ngoại tiếp tam giác ABC.
c Tìm toạ độ trực tâm H và trọng tâm G của tam giác ABC.
d Tính chu vi, diện tích tam giác ABC.
e Tìm toạ độ điểm M trên Oy để B, M, A thẳng hàng.
f Tìm toạ độ điểm N trên Ox để tam giác ANC cân tại N.
g Tìm toạ độ điểm D để ABDC là hình chữ nhật.
h Tìm toạ độ điểm K trên Ox để AOKB là hình thang đáy AO.
Cho tam giác ABC có trực tâm là H , và O là tâm đường tròn ngoại tiếp tam giác ABC.Gọi B' là điểm đối xứng với B qua O.CMR véc-tơ AH=véc-tơ B'C
Trong mặt phẳng tọa độ Oxy cho A(-2;2),B(6;6),C(2;-2).
a) Tìm tọa độ trực tâm H của tam giác ABC; tọa độ tâm đường tròn ngoại tiếp I tam giác ABC; tọa độ trọng tâm G của tam giác ABC.
b) Chứng minh : IH=-3IG.
c) Gọi AD là đường kính của đường tròn ngoại tiếp tam giác ABC. Chứng minh tứ giác ABCD là hình bình hành.
mong mn giúp mình với ạ
Cho tam giác ABC nhọn không đều có trực tâm H nội tiếp trong đường tròn (O) sao cho tiếp tuyến của đường tròn (O) tại A cắt OH tại N. Gọi K là giao điểm hai tiếp tuyến của đường tròn (O) tại B và C, M là điểm đối xứng với A qua BC. Chứng minh K, M, N thẳng hàng.