Cho tam giác ABC vuông cân tại A .Lấy các điểm D, E,F lần lượt nằm trên cạnh BC, CA, AB sao cho DB/DC=EC/EA=FA/FB.Lấy điểm G trên AB sao cho DG//AC . CM:
1) BF=AE=AG
2) AD vuông góc vs EF( gợi ý: So sánh tam giác AEF và tam giác ACD)
Ai tốt bụng giúp mk vs
Cho tam giác ABC có AH là đường cao .BD là tia phân giác góc B .Tính các góc trong tam giác biết BD=2AH.
(Gợi ý kẻ thêm đườn kẻ phụ HE//BD
Cho tam giác ABC có AH là đường cao .BD là tia phân giác góc B .Tính các góc trong tam giác biết BD=2AH. (Gợi ý kẻ thêm đườn kẻ phụ HE//BD
Cho tam giác ABC có AH là đường cao .BD là tia phân giác góc B .Tính các góc trong tam giác biết BD=2AH.
(Gợi ý kẻ thêm đườn kẻ phụ HE//BD
Cho tam giác ABC có 3 góc nhon (AB<AC) .Các đường cao AD,BE,CF cắt nhau tại H a) C'm:tam giác AEB đồng dạng với tam giác AFC từ đó suy ra AF*AB=AE*AC
b)C'm góc AEF=góc ABC
c)kẻ DM vuông góc AB tại M. Qua M kẻ đường thẳng song song với EF cắt AC tại N C'm DN vuông AC
d)gọi I là trung điểm của HC .C'm tam giác AFC đồng dạng với tam giác FHB và FA*FB=FI^2-EI^2
Tam giác nhọn ABC, đường cao AH, I là chân đường vuông góc kẻ từ H xuống AB trên tia đối của tia IH lấy điểm E sao cho IE=IH.
a)Chứng minh AE=AH.
b)K là chân đường vuông góc kẻ từ H xuống AC, trên tia đối của tia KH lấy điểm F sao cho KF=KH.Chứng minh tam giác AEF cân
c)EF cắt AB và AC tại M,N. Chứng minh HA là tia phân giác của góc MHN.
d)Chứng minh AH, BN,CM đồng quy.
cho tam giác ABC có các góc nhọn kẻ BE, CF là 2 đường cao. Kẻ EM, FN là 2 đường cao tam giác AEF. a)CM: AM/AF=AE/AC b)MN // BC
cho tam giác abc vuông tại a. các tia phân giác của góc b,c cắt nhau tại . kẻ ik vuông góc với bc. cmr kb.kc=1/2.ab.ac
Cho tam giác ABC vuông tại A. Đường cao AH. Cho biết AB=15cm,AC=20cm.
a) Chứng minh AH.BC=AB.AC
b) Tính BC,AH
) Từ H kẻ HE vuông góc với AB ở E và HF vuông góc với AC ở F. Chứng minh tam giác AEF đồng dạng với tam giác ACB