Cho tam giác ABC có M nằm trong tam giác. BM cắt AC tại I.
a) C/m MA+MB < IA+IB.
b) C/m IA+IB<CA+CB.
c) C/m MA+MB+MC<AB+AC+BC.
Cho tam giác ABC, điểm M nằm trong tam giác ABC . BM cắt AC tại I.
a) CM MA + MB < IA + IB < CA + CB.
b) CM \(\frac{1}{2}\)(AB + AC + BC) < MA + MB + MC < AB + AC + BC.
c) Trên BC lấy điểm D, E sao cho BD = CE ( D nằm giửa B, E). CM AD + AE < AB + AC.
Cho tam giác ABC và M là một điểm nằm trong tam giác. Gọi I là giao điểm của đường thẳng BM và cạnh AC.
a) So sánh MA với MI + IA, từ đó c/m MA + MB < IA + IB
b) So sánh IB với IC + CB, từ đó c/m IA + IB < AC + CB
c) C/m bất đẳng thức MA + MB < CA + CB
Cho tam giác ABC và M là 1 điểm nằm trong tam giác .Gọi I là giao điểm của đường thẳng BM và cạnh AC.
a) So sánh MA với MI + IA , từ đó c/m MA + MB < IB + IA.
b) So sánh IB với IC + CB ,từ đó c/m IB + IA < CA +CB.
c) C/m bất đẳng thức MA + MB < CA + CB.
HELP ME!
cho tam giác ABC, M thuộc tam giác ABC. Tia BM giao AC tại I.
a)CMR: AM<MI+IA.
b) MB+MA< AC+CB.
c) CMR: (AB+AC+BC):2<MA+MB+MC<AB+AC+BC
Cho tam giác ABC, M là điểm nằm trong tam giác ABC. Gọi I là giao điểm của BM và AC
cm a, MA + MB < IA + IB
b, MA + MB < AC + BC
Cho tam giác ABC có M nằm trong tam giác. Gọi I là giao điểm của BM và AC.
CM : MA + MB < IA + IB < CA + CB
.Cho tam giác ABC và M là một điểm nằm trong tam giác. Gọi I là giao điểm của đường thẳng BM và cạnh AC
a) So sánh MA với MI + IA, từ đó chứng minh MA + MB < IB + IA
b) So sánh IB với IC + CB, từ đó chứng minh IB + IA < CA + CB
c) Chứng minh bất đẳng thức MA + MB < CA + CB
Cho tam giác ABC và M là một điểm nằm trong tam giác. Gọi I là giao điểm của đường thẳng BM và cạnh AC
a) So sánh MA với MI + IA, từ đó chứng minh MA + MB < IB + IA
b) So sánh IB với IC + CB, từ đó chứng minh IB + IA < CA + CB
c) Chứng minh bất đẳng thức MA + MB < CA + CB