cho tam giác ABC cân tại A và hai đường trung tuyến BD,CE cắt nhau tại G (trong đó D thuộc AC,E thuộc AB)
a,Chứng minh BE=DC và tam giác BEC bằng tam giác CDB
b,Chứng minh tam giác BGC cân
c,Chứng minh BC<4GD
. Cho tam giác ABC cân ở A , trên cạnh AB và AC lần lượt lấy hai điểm E và D sao cho AD= AE ; BD cắt CE tại G . Chứng minh rằng:
a) BD =CE;
b) tam giác GDE cân;
c) Gọi M là trung điểm của BC . Chứng minh ba điểm A ,G ,M thẳng hàng.
d) Cho AB=13 cm, MB=5 cm . Tính độ dài đoạn AM
Cho tam giác ABC, các đường trung tuyến BD và CE cắt nhau ở G. Cho biết BD<CE, so sánh góc GBC và góc GCB.
Cho tam giác ABC cân tại A, có góc BAC nhọn. Qua A vẽ tia phân giác của góc BAC cắt cạnh BC tại D. a) Chứng minh ΔABD = ΔACD. b) Vẽ đường trung tuyến CF của tam giác ABC cắt cạnh AD tại G. Chứng minh G là trọng tâm của tam giác ABC. c) Gọi H là trung điểm của cạnh DC. Qua H vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh ΔDEC cân. d) Chứng minh ba điểm B, G, E thẳng hàng và AD > BD.
Cho tam giác ABC cân tại A, có AB=13cm;BC=10cm. Kẻ AH vuông góc BC (H thuộc BC)
a) Chứng minh HB=HC và tính AH.
b) Đường trung tuyến BD của tam giác ABC cắt AH tại G. Tính độ dài đoạn thẳng AG và BD.
c) Chứng minh tam giác BGC cân.
d) Từ B kẻ đường thẳng vuông góc với AB, đường thẳng này cắt đoạn thẳng A C tại E. Trên cạnh AE lấy điểm F sao cho EB= E F. Chứng minh góc CPF=1/2 ABE
Cho tam giác ABC vuông tại A có BC=2AB.Vẽ tia CE (E nằm giữa A và B) sao cho góc ACE=10 độ.Vẽ tia BD(D nằm giữa A và C) sao cho góc ABD=20 độ.Hai tia CE và BD cắt nhau tại F .Lấy G và H sao cho BC là trung trực của FG, AC là trung trực của FH.
a)Tính số đo các góc của tam giác: ABC, GFC, FCH, BDC, ABD.
b)Tính các góc: CDH, CDG, HDG
c)Chứng minh tam giác FED cân tại F.
Cho tam giác ABC vuông tại A có AB= 5cm, BC= 10cm
a) TÍnh độ dài AC
b) Vẽ đường phân giác BD của tam giác ABC và gọi E là hình chiếu của D trên BC. Chứng minh tam giác ABD= tam giác EBD và AE vuông góc với BD
c) Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC = tam giác AFC
d) Gọi G là trung điểm của FC. Chứng minh ba điểm B,D,G thẳng hàng
BÀI 1 cho tam giác ABC vuông tại A.Kẻ BD là phân giác của góc B.Kẻ AI vuông góc BD tại I.AI cắt BC tại E
a) chứng minh AB=EB
b) chứng minh tam giác BED vuông
c) DE cắt AB tại F, chứng minh AE//FC
BÀI 2 cho tam giác ABC cân tại A, có BD và CE là hai đường trung tuyến cắt nhau tại I
a) chứng minh tam giác IBC cân
b)lấy O thuộc tia IC sao cho IO=IE.Gọi K là trung điểm của IA.Chứng minh AO, BD, CK đồng quy
BÀI 3 cho tam giác ABC cân tại A, kẻ tia phân giác của góc BAC cắt BC tại H.Biết AB=15cm, BC=18cm
a)so sánh góc A và góc C
b)chứng minh rằng tam giác ABH = tam giác ACH
c)vẽ trung tuyến BD của tam giác ABC cắt AH tại G.Chứng minh rằng: tam giác AEG = tam giác ADG
d)tính độ dài AG
e) kẻ đường thẳng CG cắt AB ở E, chứng minh rằng: tam giác AEG = tam giác ADG
BÀI 4 cho tam giác ABC vuông tại A, trên BC lấy điểm D sao cho BA=BD.Qua D kẻ đường vuông góc với BC cắt AC tại E, qua C kẻ đường vuông góc với BE tại H cắt AB tại F
a)chứng minh tam giác ABE = tam giác DBE
b) chứng minh tam giác BCF cân
c) chứng minh 3 điểm F.D,E thẳng hàng
d)trên cạnh CB lấy điểm M sao cho CA=CM.Tính số đo góc DAM
BÀI 5 cho tam giác ABC cân tại A, kẻ BD vuông góc AC, kẻ CE vuông góc AB, BD và CE cắt nhau tại I
a)chứng minh rằng tam giác BDC = tam giác CEB
b)so sánh góc IBE và góc ICD
c) đường thẳng AI cắt BC tại H, chứng minh AI vuông góc BC tại H
BÀI 6 cho tam giác ABC vuông tại A, biết AB=6cm, AC=8cm
a)tính BC
b)trung trực của BC cắt AC tại D và cắt AB tại F, chứng minh góc DBC=DCB
c) trên tia đối của tia DB lấy E sao cho DE=DC, chứng minh tam giác BCE vuông và DF là phân giác góc ADE
d) chứng minh BE vuông góc FC
cho tam giác abc cân tại a và 2 đường trung tuyến BD và CE cắt nhau tại G (Dthuộc AC;E thuộc AB). chứng minh
a, BE=DC; tam giác bec =tam giác cdb
b, tam giác bgc cân
c, Bc<4GD
vẽ hình nha mn <3
Cho tam giác ABC có AB < AC; AB = c, AC = b. Qua M là trung điểm của BC kẻ đường vuông góc với đường phân giác trong của góc A, cắt các đường thẳng AB, AC lần lượt tại D, E.
1, Chứng minh BD = CE.
2, Tính AD và BD theo b, c