Đáp án D
Hai đường phân giác CD và BE cắt nhau tại I mà ba đường phân giác của tam giác cùng đi qua một điểm nên AI là phân giác góc A
Đáp án D
Hai đường phân giác CD và BE cắt nhau tại I mà ba đường phân giác của tam giác cùng đi qua một điểm nên AI là phân giác góc A
Cho tam giác ABC cân tại A,hai trung tuyến BE và CF cắt nhau tại I.
a)Vẽ hình và c/m AI vừa là đường trung tuyến vừa là đường phân giác của tam giác ABC.
b)C/m BE=CF và tam giác IBC là tam giác cân.
c)Trên tia đối của tia AI lấy điểm P sao cho I là trung điểm của AP. Từ P kẻ đường thẳng vuông góc với AB,đường thẳng này cắt đường thẳng BC tại K.C/m AK vuông góc với BP.
d)C/m KP+PI lớn hơn AB
Cho tam giác ABC vuông tại A có góc B bằng 30 độ. Từ trung điểm I của cạnh BC vẽ đường thẳng d vuông góc với BC cắt AC ở E, cắt AB ở K
CMR: a) EB=EC
b) BE là tia phân giác góc ABC
c) BE là đường trung trực của AI
d) tam giác BKC đều
Tam giác ABC có AB<AC. Trên tia đối của tia CA lấy D sao cho CD=AB.Gọi H, K thứ tự là trung điểm AD, BC. Trung trực của AD, BC cắt nhau tại I. Vẽ IE vuông góc AB tại E. C/m
a) AI là phân giác góc BAC
b) BE=HC và AI là trung trực EH
c) Từ C kẻ đường thẳng song song AB cắt EH tại F. C/m E,K,F thẳng hàng
Cho tam giác ABC cân tại A. Vẽ các đường phân giác BM và CN cắt nhau tại I.
a. CMR: góc ABM=góc ACN, từ đó suy ra tam giác ABM = tam giác ACN
b. CMR: AI là trung trực của BC
c. Vẽ đường thẳng đi qua C và song song với BM, có cắt tia AI tại K. CMR: tam giác ICK là tam giác cân.
d. Trên nửa mặt phẳng bờ AB có chứa điểm C vẽ tia Ax vuông góc với AI. Tia Ax cắt tia BM tại E. CMR: EC vuông góc với CN.
Cho tam giác ABC có AB < AC . Trên tia đối của tia CA lấy điểm D sao cho CD = AB . Gọi H , K lần lượt là trung điểm của AD, BC . Trung trực AD, BC cắt nhau tại I. Vẽ IE vuông góc AB tại E .
a) Chứng minh Tam giác IAB=tâm giác IDC và AI là phân giác của BAC .
b) Chứng minh BE= HC và AI là đường trung trực của đoạn EH .
c) Từ C kẻ đường thẳng song song với AB ,cắt đường thẳng EH tại F .Chứng minh
Tam giác BKE= Tam giác CKF và E , K , F thẳng hàng.
giúp mik vs nha
Cho tam giác ABC có AB bằng AC . Kẻ tia phân giác của góc A cắt cạnh BC tại I. Chứng minh:
a) tam giác AIB = tam giác AIC ?
b) AI là đường trung trực của đoạn thẳng BC?
vẽ hình nữa nhé
1.Cho tam giác ABC. Các tia phân giác của các góc B và C cắt nhau tại I. Chứng minh rằng AI là tia phân giác của góc A.
Hướng dẫn: Từ I kẻ các đường thẳng vuông góc với các cạnh của tam giác ABC
2.Cho tam giác ABC có AB < AC. Tia phân giác của góc A cắt đường trung trực của BC tại I. Kẻ IH vuông góc với đường thẳng AB, kẻ IK vuông góc với đường thẳng AC. Chứng minh rằng BH = CK.
Cho tam giác ABC cân tại A. Các đường phân giác góc B và C cắt nhau tại I.
a) Chứng minh tam giác BIC là tam giác cân;
b) So sánh góc BAI và góc IAC;
c) Chứng minh tia AI đi qua trung điểm của BC. Từ đó có thể rút ra kết luận đường phân giác của góc ở đỉnh tam giác cân cũng là đường trung tuyến được không?
1.Cho tam giác ABC các tia phân giác của góc B và góc C cắt nhau ở O..Gọi DEF lần lượt là chân đường vuông góc kẻ từ điểm O đến BC,CA,AB(D thuộc BC,E thuộc AC,F thuộc AB) tia Ao cắt BC ở M.CMR a,OD=OE=OF b,Góc MOC=góc DOB 2.Cho tam giác abc có góc A bằng 120 độ.Các tia phân giác của góc A và góc C cắt nhau ở O,cắt các cạnh BC và AB lần lượt ở D và E.Đường phân giác góc ngoài tại đỉnh B của tam giác ABC cắt đường thẳng AC ở F.CM a,BO vuông góc BF b,góc BDF=góc ADF c,3 điểm DEF thẳng hàng 3.CMR 1 tam giác có 1 trung tuyến đồng thời là phân giác thì tam giác đó là tam giác cân CẦN 1 AI ĐÓ GIẢI HỘ Ạ!!MAI PHẢI NỘP RỒI AI LÀM DÙM VỚI Ạ!!
Bài 1: Phân tích các biểu thức sau thành tích của hai đơn thức trong đó có một đơn thức là 20x5y2:
a, - 120x5y4 b, 60x6y2 c, -5x15y3
Bài 2: Điền đơn thức thích hợp vào chỗ trống:
a, 3x2y + ..........= 5 x2y b,........-2 x2 = -7 x2 c,......+.........+ x5 = x5
Bài 3: Thu gọn các đơn thức sau:
a, 5xy2(-3)y; b, 3/4 a2b3 . 2,5a; c, 1,5p.q.4p3.q2
d,2x2y.3xy2; e, 2xy.4/5x2y3.10xyz f,-10y2.(2xy)3.(-3x)2
Bài 4: Cho tam giác ABC vuông tại A (AC>AB). Gọi I là trung điểm của BC. Vẽ đường trung trực của cạnh BC cấtC tại D. Trên tia đối của tia AC lấy điểm E sao cho AE = AD. Gọi F là giao điểm của BE và đường thẳng AI. Chứng minh :
a, CD = BE; b, Góc BEC = 2. góc BEC
c, Tam giác AEF cân d, AC=BF
Bài 5: Cho tam giác ABC có góc A bằng 90o và BD là đường phân giác. Trên BC lấy điểm E sao cho BE = BA
a, Chứng minh AD = DE và BD là đường trung trực của đoạn thẳng AE
b, Kẻ AH vuông góc với BC. Chứng minh: AE là tia phân giác của góc HAC
c, Chứng minh AD<CD
d, Gọi tia Cx là tia đối của tia CB. Tia phân giác của góc Acx cắt đường thẳng BD tại K. Tính số đo góc BAK
Bài 6: Cho tam giác abc cân tại a, đường phân giác của góc b cắt ac tại M.
Kẻ me vuông góc với bc ( e thuộc bc). đường thẳng em cắt ba tại I
a, chứng minh tam giác abm = tam giác ebm
b, chứng minh bm là đường trung trực của ae
c, so sánh am và mc
d, chứng minh tam giác BCI cân