Cho tam giác ABC nhọn, các đường cao AA', BB', CC'', H là trực tâm.
a) Tính tổng \(\frac{HA'}{AA'}+\frac{Hb'}{BB'}+\frac{HC'}{CC'}\)
b) gọi AI là phân giác của tam giác ABC, IM, IN thứ tự là phân giác của góc AIC và ATB. Cmr: AN.BI.CM=BN.IC.AM
c) cmr: \(\frac{\left(AB+BC+CA\right)^2}{AA'^2=BB'^2+CC'^2}\ge4\)
Cho tam giác ABC nhọn, trực tâm H. CMR:
a. \(AB+AC>HA+HB+HC\)
b.\(AB+AC+BC>\frac{3}{2}\times\left(HA+HB+HC\right)\)
Giúp mik nha mọi người. mik cần rất gấp. Cảm ơn các bn nhìu
Cho tam giác ABC nhọn, các đường cao AA', BB', CC', H là trực tâm
a) Tính tổng \(\frac{HA'}{AA'}+\frac{HB'}{BB'}+\frac{HC'}{CC'}\)
b) Gọi AI là phân giác của tam giác ABC; IM, IN lần lượt là phân giác của góc AIC và AIB. Chứng minh rằng: AN.BI.CM=BN.IC.AM
c) Chứng minh rằng \(\frac{\left(AB+BC+CA\right)^2}{AA'^2+BB'^2+CC'^2}\ge4\)
Cho tam giác ABC, đường cao AA';BB';CC',H là trực tâm tam giác
a,Tính tổng\(\frac{HA'}{AA'}\)+\(\frac{HB'}{BB'}\)+\(\frac{HC'}{CC'}\)
b,AI là phân giác tam giác ;IM;IN là phân giác AIC;AIB.Chứng minh rằng :AN*BI*CM=BN*IC*AM
c,Tam giác ABC thế nào thì\(\frac{\left(AB+BC+CA\right)^2}{AA'^2+BB'^2+CC'^2}\)nhỏ nhất
Cho tam giác ABC nhọn, các đường cao AA', BB', CC' và trực tâm H.
a) Tính HA'/AA'+HB'/BB'+HC'/CC'
b) Gọi AI, IM, IN là phân giác của các góc BAC, AIC và AIB. Chứng minh AN.BI.CM=BN.IC.AM
c) Chứng minh \(\frac{\left(AB+BC+CA\right)^2}{AA'^2+BB'^2+CC'^2}\ge4\)
Cho tam giác ABC nhọn có các đường cao AA', BB', CC' và H là trực tâm.
a, CM \(BC'\cdot BA+CB'\cdot CA=BC^2\)
b, CMR \(\frac{HB\cdot HC}{AB\cdot AC}+\frac{HA\cdot HB}{BC\cdot AC}+\frac{HC\cdot HA}{BC\cdot AB}=1\)
c, Gọi D là trung điểm của BC. Qua H kẻ đt \(\perp\) DH cắt AB, AC tại M và N. CM : H là trung điểm của MN
cho tam giác abc nhọn có h là trực tâm
a. chứng minh rằng AB+AC>HA+HB+BC
b. Gọi P là chu vi tam giác ABC. chứng minh P>3/2(HA+HB+HC)
Cho tam giác ABC nhọn, các đường cao AA', BB', CC', H là trực tâm.
a) Tính tổng HA'/AA' + HB'/BB' + HC'/CC'
b) Gọi AI là phân giác của tam giác ABC (I nằm trong ABC); IM, IN thứ tự là phân giác của góc AIC và góc AIB. Chứng minh rằng: AN.BI.CM = BN.CI.AM
c) Tam giác ABC như thế nào thì biểu thức \(\frac{\left(AB+BC+CA\right)^2}{AA'^2+BB'^2+CC'^2}\) đạt giá trị nhỏ nhất?
cho tam giác ABC nhọn, các đường cáo AA', BB', CC', H là trực tâm.
a/ tính tổng \(\frac{HA'}{AA'}+\frac{HB'}{BB'}+\frac{HC'}{CC'}\)
b/ gọi AI là phân giác của tam giác ABC; IM; IN thứ tự là phân giác của góc AIC và góc AIB, chứng minh rằng: AN.BI.CM=BN.IC.AM
c/ tam giác ABC như thế nào thì biểu thức \(\frac{\left(AB+BC+CA\right)^2}{AA'^2+BB'^2+CC'^2}\) đạt giá trị nhỏ nhất?