Qua điểm D trên cạnh huyền BC của tam giác vuông ABC ta kẻ các đường vuông góc DH và DK lần lượt xuống các cạnh AB và AC. Chứng minh hệ thức: DB.DC = HA.HC + KA.KC
Cho tam giác ABC vuông tại A, trên cạnh BC lấy D sao cho góc BAD bằng 45 độ
a,Cho biết AB=4, \(\frac{BD}{BC}=\frac{1}{3}\)tính diện tích tam giác ABC
b,Kẻ DE vuông góc với AB, DF vuông góc với AD Chứng minh rằng EA.EB+FA.FC=DB.DC
c, Lấy điểm M trên cạnh BCsao cho AB=AM, trên cạnh AC lấy K sao cho BK vuông góc với AM tại N .CMR:\(\frac{2MN}{AM}=\frac{BM^2}{AB^2}\)
Cho tam giác ABC nhọn nội tiếp đường tròn (O). Trên cung nhỏ BC lấy điểm D bất kì (D ¹ B, C). Vẽ DM vuông góc với BC tại M . Vẽ DN vuông góc với AC tại N .
a) Chứng minh bốn điểm D, M, N, C cùng thuộc một đường tròn. b) Vẽ DK vuông góc với AB tại K . Chứng minh KD.CD = ND.BD.
c) Trên dây BCvẽ điểm E sao cho CDE= ADB. Tìm vị trí của điểm D trên cung nhỏ BC để
tổng DK + DN nhỏ nhất.
cho tam giác abc vuông tại a từ một điểm d trên cạnh bc vẽ DH,DI,DK lần lượt vuông góc với AB,AC,HI. trên tia DK lấy điểm E sao cho K là trung điểm của DE a,cmr các tứ giác AHDI, HDIE là các tứ giác nội tiếp . nếu cách tìm tâm của đường tròn ngoại tiếp này b, cmr 5 điểm A,H,I,D,E, CÙNG THUỘC 1 ĐƯỜNG TRÒN
cho tam giác ABC vuông tại A.Vẽ đường cao AH. Trên cạnh BC lấy điểm D sao cho BD=BA
a/ CMR góc BAD= góc ADB
b/CMR AD là tia phân giác của góc HAC
c/Vẽ DK vuông góc AC (K thuộc AC). CMR AK=AH
CM AB+AC<BC+2AH
cho tam giác ABC vuông tại A có đường cao AH. lấy M bất kỳ trên cạnh BC trên nửa mặt phẳng bờ BC có chứa A kẻ tia Bx, Cy vuông góc với BC đường thẳng vuông góc với AM tại A cắt By, Cy lần lượt tại I và K. Chứng minh:
a) \(AB^2\)=BH.BC
b) tam giác ACK đồng dạng tam giác ABM
c) tam giác ABC đồng dạng tam giác AMK
Vẽ hình nữa nhé!!!
cho tam giác ABC vuông tại A. Từ 1 điểm M trên cạnh BC ta kẻ đường thẳng vuông góc với AB tại H và vuông góc với A tại I. CMR: MB.MC=HA.HB+IA.IC
Cho tam giác ABC (AB < AC), Phân giác AD(D thuộc BC).Từ D hạ DH vuông góc với AB, DK vuông góc với AC.
Chứng minh rằng các điểm H và K nằm trên đường tròn đường kính AD.
Câu 1: Cho hình thang ABCD có góc A = góc D = 90° và hai đường chéo vuông góc với nhau tại H. Chứng minh rằng AB.DC = AH.AC
Cho tam giác ABC vuông ở A có AH là đường cao. Trên cạnh AC lấy điểm S, vẽ AT vuông góc BS ở T. CHứng minh rằng:
a) góc THS = góc TCS
b) AB + AC < AH + BC