Cho tam giác ABC có góc A=1200, AD là tia phân giác góc CAB. Chứng minh 1/AD=1/AB+1/AC
GIẢI GIÚP MIK VỚI🥺
1. Cho tứ giác ABCD có góc BAD+góc BCD=180 độ. Chứng minh góc BDA=góc ACB.
2. Cho tam giác abc có tia phân giác AD. Chứng minh AD2< AB. AC.
3. Cho tam giác ABC cần tại A. Đường cao AD. Hạ DH vuông góc với AC. Gọi I là trung điểm của DH. Chứng minh tam giác AID đồng dạng với tam giác BHC.
Bài 1 : Cho tam giác ABC có AB=6cm ; AC=10cm ; BC=12cm . Vẽ đường phân giác AD của góc A . Trên tia đối của tia DA lấy điểm I sao cho góc ACI = góc BDA
a) Tính DB , DC
b) Chứng minh tam giác ACI đồng dạng với tam giác CDI
c) Chứng minh AD^2=AB.AC-DB.DC
Bài 1: cho tam giác abc , trung tuyến ad. Tia phân giác của góc adc cắt ab ở m tia phân giác của góc adc cắt ac ở n . Biết dm=dn. Chứng minh rằng tam giác abc là tam giác cân
Bài2: cho tam giác abc cân có ab=ac=5cm, bc=6cm. Các đường phân giác ai, bk, ch
a) tính độ dài kh
b) tính diện tích tam giác ikh
Bài 1. Cho tam giác ABC có AB = AC và đường phân giác AD.
a, Chứng minh AD vuông góc với BC.
b, Lấy điểm E thuộc cạnh AB, điểm F thuộc cạnh AC sao cho BE = CF. Chứng minh rằng
DA là tia phân giác của góc EDF.
Bài 2. Cho tam giác ABC (AB = AC). BD và CE là hai phân giác của tam giác.
a) Chứng minh: BD = CE.
b) Xác định dạng của ADE.
c) Chứng minh: DE // BC.
Bài 3. Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA, trên
tia BA lấy điểm F sao cho BF = BC. Kẻ BD là phân giác của góc ABC (D AC). Chứng
minh rằng:
a) DE BC ; AE BD. b) AD < DC.
c) ADF = EDC. d) E, D, F thẳng hàng.
Bài 4. Cho tam giác ABC có AB < AC, phân giác AM. Trên tia AC lấy điểm N sao cho
AN = AB. Gọi K là giao điểm của các đường thẳng AB và MN. Chứng minh rằng:
a) MB = MN. b) MBK = MNC.
c) AM KC và BN // KC. d) AC - AB > MC - MB.
Bài 5. Cho ABC cân tại A có góc A nhọn, hai đường cao BD và CE cắt nhau tại H.
a) Chứng minh AE = AD
b) Chứng minh AH là phân giác của góc BAC và AH là trung trực của ED.
c) So sánh HE và HC.
d) Qua E kẻ EF // BD (F AC), tia phân giác góc ACE cắt ED tại I. Tính góc EFI.
Bài 1:Cho hình bình hành ABCD có AD bằng 1/2 AB. Chứng minh AM là tia phân giác của góc A, BM tia phân giác của góc B
Bài 2:Cho tam giác ABC có H là trực tâm, O là trung điểm của BC. By vuông góc với AB, Cx vuông góc với AC, By và Cx giao nhau tại D.
a) Chứng minh tứ giác BHCD là hình bình hành
b) Chứng minh H, O, D thẳng hàng
Cho tam giác ABC có D là đường phân giác trong. Ở ngoài tam giác ABC, vẽ tia CX sao cho góc BCX = góc BAD. Gọi I là giao điểm của CX và AD. CMR
a, tam giác ADB đồng dạng tam giác CDI
b, AD/AC = AB/AI
c, AD^2=AD×AC - BD×BC
Mik cần gấp lắm, trog trưa mai là phải có oy -.- Mong các bn giúp mik :<
Cho tam giác ABC vuông tại A có AB bằng 6 cm BC = 10 cm Vẽ đường cao AH H thuộc BC a) Chứng minh tam giác ABC đồng dạng với tam giác hba b) kẻ tia phân giác AD của góc ABC tia phân giác của góc ABC cắt ah AD lần lượt tại E và F Chứng minh ae = 5/3 eh c) chứng minh bf vu0ng góc ad
Bài 1 : Cho hình thang cân ABCD (AD // BC) có góc A = 60 độ , AD = 4 cm và BC = 2 cm. Qua B kẻ đường thẳng song song với CD cắt AD ở E.
1) Tính ED.
2) Chứng minh tam giác ABE đều.
3) Kẻ BH vuông góc với AD ở H. Tính AH.
Bài 2 : Cho tam giác ABC cân tại A có các đường phân giác BE và CF. Chứng minh :
1) Tam giác AEF cân tại A
2) Tứ giác BCEF là hình thang cân
3) CE=EF=FB
Bài 3 : Tứ giac ABCD có góc A=góc B, BC=CD và DB là tia phân giác của góc D. Chứng minh:
1) Tứ giác ABCD là hình thang vuông
2) AC^2 + AD^2 = BC^2 + BD^2
Bài 4 :Cho hình tang cân ABCD (AB song song CD,AB<CD) có AH,BK là các đường cao. Chứng minh :
1) Tam giác AHD=Tam giác BKC
2) DH = (CD-AB)/2
GIÚP TUI VS!!!! CÂN GẤP Ạ