Bài 1: Cho tam giác ABC vuông tại A. Qua A kẻ đường thẳng xy sao cho xy tạo với AB góc BAx = 45 độ( Góc BAx nằm ngoài tam giác ABC). Từ B và C hạ BK vuông góc với xy, CI vuông góc với xy, M là trung điểm của BC. Chứng minh:
a) MI và MK lần lượt là trung trực của AC và AB
b) Góc IMK vuông
Bài 2: Cho tam giác ABC có góc A tù. Tia phân giác của góc B và góc C cắt nhau tại O. Lấy điểm E trên cạnh AB. Từ E hạ EP vuông góc với BO và từ P hạ PF vuông góc với OC( P thuộc BC và F thuộc AC). Chứng minh rằng: Khi E di động trên cạnh AB thì đường trung trực của EF luôn đi qua 1 điểm cố định
Tam giác ABC;góc A là góc tù ; tia phân giác của góc B và góc C cắt nhau tại O. Lấy E là một điểm trên AB. Từ E hạ EP vuông góc với BC [P\(\varepsilon\) BC] . Từ P hạ PF vuông góc với AC [F \(\varepsilon\)AC].
CMR:
a] OB và OC là trung trực của đoan thẳng EP và PF
b]BE+CF=BC
c] Khi điểm E di chuyển trên AB thì đường trung trực EF luôn luôn đi qua 1 diểm cố định.
cho tam giác ABC, tia phân giác góc B và góc C cắt nhau tại O. gọi D,E,F lần lượt là chân đường cao kẻ từ O xuống 3 cạnh của tam giác. D thuộc BC, E thuộc AC, F thuộc AB. tia AO cắt BC tại M. cm: góc DOB = góc MOC.
Bài 1:
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M; trên tia đối của tia CB
lấy điểm N sao cho MB = CN. Từ B hạ
BE AM ( E AM) ⊥
, từ C hạ
CF AN ( F AN) ⊥
Chứng minh rằng:
a/ Tam giác AMN cân b/ BE = CF c/
BME = CNF
Bài 2: Cho tam giác ABC cân tại A, đường thẳng vuông góc với AB tại B cắt đường
thẳng vuông góc với AC tại C ở D. Chứng minh rằng AD là tia phân giác của góc BAC
Bài 3: Cho tam giác ABC vuông cân tại A. Qua A kẻ đường thẳng d ( d không cát đoạn
thẳng BC). Từ B hạ
BE d ( E d) ⊥
, từ C hạ
CF d ( F d) ⊥
. So sánh: BE + CF và FE?
Bài 4: Cho tam giác ABC vuông cân tại A, kẻ AH vuông góc với BC ( H thuộc BC). Từ
H kẻ
HM AC ⊥
và trên tia HM lấy điểm E sao cho HM = EM. Kẻ
HN AB ⊥
và trên tia
HN lấy điểm D sao cho NH = ND. Chứng minh rằng:
a/ Ba điểm D; A; E thẳng hàng
b/ BD // CE
c/ BC = BD + CE
Bài 5: Cho tam giác ABC vuông cân tại A, D là trung điểm của AC. Từ A kẻ đường
thẳng vuông góc với BD, cắt BC tại E. Chứng minh rằng: AE = 2DE.
1. Cho tam giác ABC ( AB khác AC). M là trung điểm của Bc, đường trung trực của cạnh BC cắt tia phân giác Ax của góc A tại O, cắt AC tại N, từ N kẻ đường thẳng vuông góc với AO cắt AB tại G. Gọi E, F lần lượt Là chân các đường vuông góc hạ từ O xuống AB, AC.
a,Cm tam giác AGO= ANO
b, Cmr GN song song EF
c, Các đường thẳng EF, BC, ON đồng quy
Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:
a) BD là đường trung trực của AE.
b) AD<DC
c) Ba điểm E, D, F thẳng hàng
Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.
a) Tính BC
b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB
c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông
d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF
Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:
a) Tam giác ANC là tam giác cân
b) NC vuông góc BC
c) Tam giác AEC là tam giác cân
d) So sánh BC và NE
Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:
a) Góc ACE= góc ABD
b) Tam giác ABD = tam giác ECA
c) Tam giác AED là tam giác vuông cân
Cho tam gác abc có góc a=75 độ, góc c=35 độ, m là trung điểm của bc. đường thẳng đi qua m và vuông góc với phân giác của góc a cắt ab, ac lần lượt tại e và f
a/ chứng minh rằng: be=cf
b/ đường thẳng qua e song song với bc và đường thẳng qua c song song với ba cắt nhau tại j. chứng minh cfj là tam giác cân. từ đó, so sánh bc và ef
c/ tia phân giác ngoài của góc a của tam giác abc cắt đường thẳng bc tại i. Gọi n là điểm thuộc bi sao cho bn=ab. chứng minh: ni=ac
Cho tam giác ABC, đường phân giác của góc B và đường phân giác của C cắt nhau tại I. Qua I kẻ đường thẳng song song với BC cắt AB, AC lần lượt tại E, F.
a) Chứng mình BEI, CFI là các tam giác cân.
b) Chứng minh BE + CF = EF.
c) Gọi M là trung điểm của IB, N là trung điểm của IC, các đường thẳng EM, FN cắt nhau tại O. Chứng minh OB = OC.
d) Chứng minh ba điểm A, I, O thẳng hàng.
Cho tam giác ABC có AB <AC đường trung trực Dx của cạnh BC cắt tia phân giác của góc BAC tại O Hạ OE vuông góc với AB ,OF vuông góc với AC . Chứng minh:
a,BE=CF
b,3 điểm E,D,F thẳng hàng