ta có: AM=5 => BC=5.2=10(cm)
mặt khác HM2=AM2-AH2=25-16=9
=> HM=3
=> HB=5-3=2(cm)=> AB2=AH2+HB2=16+4=20
=> AB= căn 20
=> AC................
ta có: AM=5 => BC=5.2=10(cm)
mặt khác HM2=AM2-AH2=25-16=9
=> HM=3
=> HB=5-3=2(cm)=> AB2=AH2+HB2=16+4=20
=> AB= căn 20
=> AC................
cho tam giác ABC vuong tại A có AB<AC và đường cao AH. gọi M,N,P lần lượt là trung điểm của các cạnh BC, CA, AB , biết AH=4,AM=5.cmr các điểm A,H,M,N,P thuộc cùng một đường tròn
Cho tam giác ABC vuông tại A(AB < AC), đường cao AH. Đường tròn tâm ở đường kính AH cắt các cạnh AB, AC lần lượt tại M, N, 1) Chứng minh tứ giác AMIN là hình chữ nhật và AM AB = AN AC 2) Gọi O là trung điểm của cạnh BC, D là giao điểm của MV và On Chứng minh tứ giác BAVC nội tiếp và O L M N 3) Gọi P là giao điểm của BC và MN, K là giao điểm thứ hai của AP và đường tròn () đường kính AH. Chứng minh rằng BKC 90°
cho tam giác ABC vuông tại A (AB<AC). Đường tròn (I) nội tiếp tam giác ABC tiếp xúc với các cạnh BC, CA, AB lần lượt tại D, E, F. Gọi S là giao điểm của AI và DE. a) Chứng minh tam giác IAB đồng dạng tam giác EAS.
b)Gọi K là trung điểm AB, O là trung điểm BC. Chứng minh K, S, O thẳng hàng.
c)Gọi giao điểm của KI và AC là M. Đường cao AH của tam giác ABC cắt DE tại N. Chứng minh AM=AN
Cho tam giác ABC vuông tại A. Gọi I là tâm đường tròn nội tiếp tam giáo ABC, các tiếp điểm trên BC, CA, AB lần lượt là D,E,F. Gọi M là trung điểm của AC, đường thẳng MI cắt cạnh AB tại N, đường thẳng DF cắt đường cao AH của tam giác ABC tại P. Chứng minh tam giác ANP là tam giác cân.
cho tam giác ABC vuông tại A (AB<AC). Đường tròn (I) nội tiếp tam giác ABC tiếp xúc với các cạnh BC, CA, AB lần lượt tại D, E, F. Gọi S là giao điểm của AI và DE. a) Chứng minh tam giác IAB đồng dạng tam giác EAS. b)Gọi K là trung điểm AB, O là trung điểm BC. Chứng minh K, S, O thẳng hàng. c)Gọi giao điểm của KI và AC là M. Đường cao AH của tam giác ABC cắt DE tại N. Chứng minh AM=AN
1) cho tam giác vuông ABC đường cao AH .gọi AD ;AE là phân giác các góc BAH và góc CAH .chứng minh rằng đường tròn nội tiếp tam giác BCA trùng với đường tròn ngoại tiếp tam giác ADE
2)cho tam giác ABC vuông tại A;gọi I là tâm đường tròn nội tiếp tam giác ABC ;các tiếp điểm trên BC;CA;AB lần lượt là D,E,F.gọi M là trung điểm của AC ,đường thẳng MI cắt các cạnh AB tại N ,đường thẳng DF cắt đường cao AH tại P .cmr tam giác APN cân
Cho tam giác ABC vuông tại A , AB= 6cm , AC=8 cm , kẻ đường cao AH
a) Tính độ dài AH
b)Gọi I là giao điểm của các đường phân giác của tam giác ABC, gọi K,E,F thức tự là chân đường vuông góc kẻ từ I lần lượt đến các cạnh AB, BC, CA . Tính đọ dài BE
Cho tam giác ABC vuông tại A. Gọi I là tâm đường tròn nội tiếp tam giác ABC, các tiếp điểm BC, CA, AB lần lượt là D, E, F. Gọi M là trung điểm AC, đường thẳng MI cắt cạnh AB tại N, đường thẳng DF cắt đường cao AH của △ABC tại P.
Chứng minh rằng tam giác APN là tam giác cân
Cho tam giác ABC vuông tại A cạnh AB = 5cm AC=12 . Từ trung điểm Mcủa cạnh huyền BC Kẻ vuông góc với BC cách cạnh góc vuông tại N
a) Tính MN
b) gọi AH là đường cao của tam giác abc .Tính AH , BH , CH