Cho tam giác ABC có góc A= 2 lần góc C. Kẻ AH vuông góc với BC. Trên tia đối của tia BA lấy BE=BH. Kẻ đường thẳng EH cắt AC tại D a, Cm: góc ABC bằng 2 lần góc BHE b, Cm: tam giác DHC là tam giác cân c, Cm: tam giác DHA là tam giác cân
cho tam giacs ABC có góc ABC = 2 góc C . Kẻ AH vuông góc BC . Trên tia đối của tia BA lấy BE = BH . Kẻ đường thẳng EH cắt AC ở D . Chứng minh :
a) góc ABC = 2 góc BHE
b)tam giác DHC là tam giác cân
c) tam giác DAH là tam giác cân
1. Cho x'x//y'y, MN cắt x'x tại M, y'y tại N. E, F thuộc y'y về 2 phía của N : NE =NF=MN.CMR:a) ME, MF là 2 tia phân giác của góc xMN, x'MN b) tam giác MEF vuông
2. Cho tam giác ABC cân tại A, trên tia đối của tia BC lấy điểm D ,E sao cho CE=BD . Nối AD, AE. So sánh góc ABD với ACE. CM tam giác ADE cân
3. CHOtam giác ABC tia phân giác góc B, C cắt nhau tại O. Qua O kẻ đường thẳng song song với BC, cắt AB tại D, cắt AC tại E. CM DE =DB +EC
4. CHO TAM GIÁC ABC VUÔNG TẠI A và góc B =60°. Cx vuông góc với BC, trên tia Cx lấy đoạn CE=CA ( CE, CA CÙNG PHÍA VỚI BC ). KÉO DÀI CB LẤY F : BF =BA. CM TAM GIÁC ABC ĐỀU VÀ 3 ĐIỂM E, A, F THẲNG HÀNG
5. Cho tam giác ABD : góc B=2D, kẻ AH vuông góc với BD (H thuộc BD ). Trên tia đối của tia BA lấy BE =BH. Đường thẳng EH cắt AD tại F. CM FH=FA =FD
6. Cho tam giác ABC cân tại A, đường cao AH. Trên tia AH lấy điểm D sao cho H là trung điểm của đoạn thẳng AD. Nối CD. CM CD=AB và CB là tia phân giác của góc ACD
7. CHO tam giác ABC cân tại A, đường cao BH. CMR góc BAC =2 CBH
8. Cho tam giác ABC có góc B =60, 2 tia phân giác AD và CE của tam giác cắt nhau tại I. CMR tam giác IDE cân
9. Cho tam giác ABC cân tại A, đường cao AH, HD, HE lần lượt là đường cao của tam giác AHB, AHC. trên tia đối của tia DH, EH lấy điểm M, N: DM=DB, EN =EH.CMR: a) tam giác AMN và tam giác HMN cân b) góc MAN=2BAC
cho tam giác ABC có góc ABC = 2 lần góc C . Kẻ Ah vuông góc với BC . Trên tia đối của BA lấy BE = BH đường thẳng EH cắt AC ở D . Chứng minh
a) Góc ABC = 2 lần góc BHE
b) Chứng minh tam giác DHC cân
c) chứng minh tam giấc DAH cân
Cho tam giác ABC có góc ABC=2 góc ACB , Kẻ AH vuông góc với BC tại H trên tia đối của tia BA lấy điểm E sao cho BE=BH . đường thẳng EH cắt tia AC tại D
a, CM tam giác DHC cân
b. CM AC=2HD
c, CM AE=HC
d, NẾU AB =c, AC=b, BC=a . Tinh AE theo a,b,c
Cho tam giác ABC có ABC=2c.Kẻ AH vuông góc với BC . Trên tia đối của tia BA lấy điểm E sao cho BE=BH.kẻ đường thẳng BH cắt AC ở D
a.CM ABC=2BHE
b.CM tam giác DHC cân
c. CM tam giác DHA cân
Cho tam gics ABC có góc BAC=2C, kẻ AH vuông góc với BC, trên tia đối của BA lấy điểm E sao cho BE=BH. Kẻ EH cắt AC ở D. Chứng minh
a, góc ABC= 2BHE
b, tam giác DHC là tam giác cân
c,tam giác DAH là tam giác cân
cho tam giác ABC vuông tại A.Phân giác góc B cát AC ở E. Từ E kẻ EH vuông góc với BC tại H.Đường thẳng EH cắt đg thẳng AB tại I
a,CM tam giác BAE = tam giác BHE
b, CM tam giác EIC cân
c, CM BE vuông góc với IC
cho tam giác cân ABC(AB=AC).góc A= 100 Độ .tia phân giác của góc B cắt AC tại D .qua A kẻ đường thẳng vuông góc với BD cắt BC tại I.
a)CM: BA=BI
b)trên tia đối của DB lấy điểm K sao cho DK=DA .CM;tam giác AIK là tam giác đều.
c)tính các góc trong tam giác BCK