Vì EM//AC và MD//AB => AEMD là hình bình hành( dấu hiệu nhận biết) mà I là trung điểm ED => I cũng là trung điểm AM (tính chất của hình bình hành) => I,A,M thẳng hàng hay góc AIM =180 độ :)
Vì EM//AC và MD//AB => AEMD là hình bình hành( dấu hiệu nhận biết) mà I là trung điểm ED => I cũng là trung điểm AM (tính chất của hình bình hành) => I,A,M thẳng hàng hay góc AIM =180 độ :)
Cho tam giác ABC có E thuộc cạnh AB, D thuộc cạnh AC và M thuộc cạnh BC sao cho EM // AC; MD // AB. Gọi I là trung điểm của ED. Khi đó số đo của AIM là
CHO TAM GIÁC ABC NHỌN BÀ ĐIỂM M BẤT KÌ TRÊN CẠNH BC(KHÁC B,C) VẼ MD//AC,ME//AB(D THUỘC AB, E THUỘC AC) . GỌI I LÀ TRUNG ĐIỂM CỦA AM
CHỨNG MINH: D ĐỐI XỨNG VS E TẠI I
CHO TAM GIÁC ABC NHỌN BÀ ĐIỂM M BẤT KÌ TRÊN CẠNH BC(KHÁC B,C) VẼ MD//AC,ME//AB(D THUỘC AB, E THUỘC AC) . GỌI I LÀ TRUNG ĐIỂM CỦA AM CHỨNG MINH D ĐỐI XỨNG VS E TẠI I
Cho tam giác ABC, trên cạnh BC lấy điểm M. Kẻ MD//AB, ME//AC,( D thuộc AC, E thuộc AB). Vẽ điểm I sao cho DE là đường trung trực của MI. CM: tứ giác AIED là hình thang cân
CHO TAM GIÁC ABC NHỌN BÀ ĐIỂM M BẤT KÌ TRÊN CẠNH BC(KHÁC B,C) VẼ MD//AC,ME//AB(D THUỘC AB, E THUỘC AC) . GỌI I LÀ TRUNG ĐIỂM CỦA AM CM D ĐỐI XỨNG VS E TẠI I TOÁN LỚP 8
cho tam giác ABC cân tại A . Gọi M là điểm bất kỳ thuộc cạnh đáy BC . Từ M kẻ ME //AB ( E thuộc AC ) và MD // AC ( D thuộc AB )
a, chứng minh ADME là hình bình hành
b, chứng minh tam giác MEC cân và MD + ME = AC
c, xác định vị trí của M trên cạnh BC ADME là hình thoi
Cho tam giác ABC, điểm F thuộc cạnh AB, điểm E thuộc cạnh AC sao cho AE/FB=AE/EC=1/2, gọi gọi I là giao điểm của BE và CF, gọi D là giao điểm của AI và BC. Chứng minh I là trung điểm của AD và D là trung điểm của BC
Cho tam giác ABC có AB = 6cm, AC = 9cm. Trên cạnh AB lấy M sao cho AM = 4,5cm, trên cạnh
AC lấy N sao cho AN = 3cm.
a) So sánh các tỉ số ANABANABvà AMACAMAC . Chứng minh : Tam giác ANM đồng dạng tam giác ABC.
b) Kẻ MK // BC (K thuộc AC). Tính CK và NK.
c) Trên cạnh BC lấy điểm J sao cho BC = 3CJ, trên cạnh MN lấy điểm I sao cho 3MI = MN.
Chứng minh : tam giác AMI đồng dạng tam giác ACJ.
d) Vẽ điểm F sao cho A là trung điểm của FB. Gọi AD, AE lần lượt là đường phân giác của
tam giác ABC, tam giác AFC (D thuộc BC, E thuộc FC). Chứng minh : ED // FB.
Bài 8. Cho tam giác ABC, lấy điểm D thuộc cạnh AB, E thuộc cạnh AC sao cho BD=CE. Gọi I, K, M theo thứ tự là trung điểm của BE và CD, BC a) Chứng minh tam giác IMK cân. b) Gọi giao điểm của IK với AB và AC theo thứ tự là G, H. Chứng minh AG=AH. c) Gọi N là trung điểm của DE. Gọi P và Q theo thứ tự là giao điểm của MN với AB và AC. Chứng minh tam giác APQ cân