Cho a,b,c là độ dài các cạnh của một tam giác và x,y,z lấn lượt là độ dài các đường phân giác của tam giác đó:
CMR: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Cho tam giác ABC gọi độ dài 3 cạnh của tam giác lần lượt là a,b,c.
Gọi độ dài 3 tia phân giác là x,y,z . Biết a+b+c=9
Chứng minh : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>1\)
Cho a,b,c là độ dài các cạnh của 1 tam giác và x,y,z là độ dài của các đường phân giác.CMR:\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
1/c nha
Cho a,b,c là độ dài các cạnh tam giác ABC. x,y,z tương ứng là độ dài các đường phân giác của góc đối diện cạnh đó. CMR
a) \(x< \frac{2cb}{b+c}\)
b) \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Cho a,b,c là 3 cạnh của 1 tam giác, x,y,z là độ dài các phân giác trong của các góc đối diện với các cạnh đó. cmr: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
a) Cho x, y, z > 0 thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=4\)
Chứng minh rằng : \(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le1\)
b) Cho a, b, c là độ dài ba cạnh của một tam giác . Chứng minh :
\(\frac{1}{a+b-c}+\frac{1}{a+c-b}+\frac{1}{b+c-a}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
c) Cho a, b, c > 0 thỏa mãn : abc = ab + bc + ca . Chứng minh :
\(\frac{1}{a+2b+3c}+\frac{1}{b+2c+3a}+\frac{1}{c+2a+3b}\le\frac{3}{16}\)
Cho tam giác ABC có BC=a, CA=b, AB=c. Độ dài các tia phân giác trong của tam giác kẻ từ các đỉnh A,B,C lần lượt là \(l_a,l_b,l_c\). CMR: \(\frac{1}{l_a}+\frac{1}{l_b}+\frac{1}{l_c}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Cho tam giác ABC có BC = a, CA = b, AB = c. Độ dài các đường phân giác trong của tam giác kẻ từ đỉnh A,B,C lần lượt là \(l_a,l_b,l_c\). Chứng minh rằng : \(\frac{1}{l_a}+\frac{1}{l_b}+\frac{1}{l_c}>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Cho tam giác ABC có BC=a, CA=b, AB=c và a+b+c=9; x, y, z lần lượt là độ dài các đường phân giác của góc A, B, C .
Chứng minh rằng : 1/x + 1/y + 1/z > 1.