Bài giải
Vì BM = CM và M nằm trên đoạn BC nên BM = CM = \(\frac{1}{2}\) BC.
Ta thấy: SABM = SAMC = \(\frac{1}{2}\) SABC vì chúng có chung chiều cao là chiều cao của tam giác ABC và có đáy BM = CM = \(\frac{1}{2}\) BC.
Do đó SABM = SAMC = \(\frac{1}{2}\) × 60 = 30 (cm2)
Ta lại thấy: SAMN = \(\frac{1}{3}\) SAMC vì chúng có chung chiều cao kẻ từ đỉnh M xuống đoạn AC và có đáy AN = \(\frac{1}{3}\) AC.
Do đó SAMN = \(\frac{1}{3}\) × 30 = 10 (cm2)
Dễ thấy SABMN = SABM + SAMN = 30 + 10 = 40 (cm2)
Vậy diện tích hình bình hành ABMN là 40 cm2
Bạn tự vẽ hình được rồi nha, mình không biết vẽ trên trang này kiểu nào)
Bài giải
Vì BM = CM và M nằm trên đoạn BC nên BM = CM = $\frac{1}{2}$12 BC.
Ta thấy: SABM = SAMC =\(\frac{1}{2}\) SABC vì chúng có chung chiều cao là chiều cao của tam giác ABC và có đáy BM = CM = \(\frac{1}{2}\) BC.
Do đó SABM = SAMC = \(\frac{1}{2}\) × 60 = 30 (cm2)
Ta lại thấy: SAMN = \(\frac{1}{3}\) SAMC vì chúng có chung chiều cao kẻ từ đỉnh M xuống đoạn AC và có đáy AN = \(\frac{1}{3}\) AC.
Do đó SAMN =\(\frac{1}{3}\) × 30 = 10 (cm2)
Dễ thấy SABMN = SABM + SAMN = 30 + 10 = 40 (cm2)
Vậy diện tích hình bình hành ABMN là 40 cm2
Viết thêm câu này nữa để đẩy câu kia xuống cho đỡ tốn diện tích.