Cho tam giác ABC có trung điểm I và phân giác AD. Qua D vẽ đường thẳng vuông góc với AD cắt AB, AI, AC lần lượt tại E, K, F.Qua E kẻ đường thẳng vuông góc với AB cắt tia AD tại O. Chứng minh rằng KO vuông góc với BC.
Cho tam giác ABC vuông tại A có đường cao AH và D là trung điểm AC. Gọi M là giao điểm BD và AH. Qua M vẽ đường thẳng song song với AC cắt AB, AC lần lượt tja E và F, AF cắt BD tại I. Chứng minh tam giác BIH đồng dạng với tam giác BCD.
1 . Cho tam giác ABC có góc A =90o,AB =80 cm,AC=60 cm,AH là đường cao, AI là phân giác(H và I thuộc BC)
a.Tính BC,AH,BI,CI
b.Chứng minh tam giác ABC và tam giác HAC đồng dạng
c.HM và HN là phân giác của tam giác ABH và tam giác ACH. Chứng monh tam giác MAH và tam giác NCH đồng dạng.
d.Chứng minh tam giác ABC và tam giác HMN đồng dạng rồi chứng minh tam giác MAN vuông cân
e.Phân giác của góc ACB cắt HN ở E, phân giác của góc ABC cắt HM ở F. Chứng minh EF song song với MN
f.Chứng minh:BF.EC=AF. AE
2 ,
Cho tam giác ABC có 3 góc nhọn. Các đường cao lần lượt là AD , BE, CF cắt nhau tại H.
a)Chứng minh tam giác AEF đồng dạng với tam giác ABC.
b)Chứng minh tam giác AEF đồng dạng với tam giác DBF.
3 .
Cho tam giác ABC vuông tại A , AB=9cm; AC=12cm. đường cao AH, đường phân giác BD.Kẻ DE vuông góc với BC(E thuộc BC), đường thẳng DE cắt đường thẳng AB tại F.
a.Tính BC, AH?
b.Chứng minh tam giác EBF đồng dạng với tam giác EDC
c.Gọi I là giao điểm của AH và BD.Chứng minh.AB.BI=BH.BD
d.Chứng minh BD vuông góc với CF
e.Tính tỉ số diện tích của 2 tam giác ABC và BCD
giải phương trình : x^2 - 2x -3=-4
1 . Cho tam giác ABC có góc A =90o,AB =80 cm,AC=60 cm,AH là đường cao, AI là phân giác(H và I thuộc BC)
a.Tính BC,AH,BI,CI
b.Chứng minh tam giác ABC và tam giác HAC đồng dạng
c.HM và HN là phân giác của tam giác ABH và tam giác ACH. Chứng monh tam giác MAH và tam giác NCH đồng dạng.
d.Chứng minh tam giác ABC và tam giác HMN đồng dạng rồi chứng minh tam giác MAN vuông cân
e.Phân giác của góc ACB cắt HN ở E, phân giác của góc ABC cắt HM ở F. Chứng minh EF song song với MN
f.Chứng minh:BF.EC=AF. AE
2 ,
Cho tam giác ABC có 3 góc nhọn. Các đường cao lần lượt là AD , BE, CF cắt nhau tại H.
a)Chứng minh tam giác AEF đồng dạng với tam giác ABC.
b)Chứng minh tam giác AEF đồng dạng với tam giác DBF.
3 .
Cho tam giác ABC vuông tại A , AB=9cm; AC=12cm. đường cao AH, đường phân giác BD.Kẻ DE vuông góc với BC(E thuộc BC), đường thẳng DE cắt đường thẳng AB tại F.
a.Tính BC, AH?
b.Chứng minh tam giác EBF đồng dạng với tam giác EDC
c.Gọi I là giao điểm của AH và BD.Chứng minh.AB.BI=BH.BD
d.Chứng minh BD vuông góc với CF
e.Tính tỉ số diện tích của 2 tam giác ABC và BCD
giải phương trình : x^2 - 2x -3=-4
Cho tam giác ABC nội tiếp đường tròn (O), tia phân giác của góc A cắt đường tròn ở M. Tiếp tuyến kẻ từ M với đường tròn cắt các tia AB và AC lần lượt tại D và E. Chứng minh: a/ BC song song với DE b/ Tam giác AMB đồng dạng tam giác MCE c/ Tam giác AMC đồng dạng tam giác MDB d/ Nếu AC=CE thì MA^2 = MD.ME
BÀI 4. Cho tam giác ABC, đường phân giác của góc B và đường phân giác của C cắt nhau tại I. Qua I kẻ đường thẳng song song với BC cắt AB, AC lần lượt tại E, F.
a) Chứng mình BEI, CFI là các tam giác cân.
b) Chứng minh BE + CF = EF.
c) Gọi M là trung điểm của IB, N là trung điểm của IC, các đường thẳng EM, FN cắt nhau tại O. Chứng minh OB = OC.
d) Chứng minh ba điểm A, I, O thẳng hàng.
Cho tam giác nhọn ABC có hai đường cao BD và CE cắt nhau tại H. Các tia phân giác các góc EHB, DHC cắt AB, AC lần lượt tại I và K. Qua I và K lần lượt vẽ các đường vuông góc với AB, AC chúng cắt nhau tại M.
a) Chứng minh AI = AK.
b) Giả sử tam giác nhọn ABC có hai đỉnh B, C cố định, đỉnh A di động . Chứng minh đường thẳng HM luôn đi qua một điểm cố định
Lam giup minh cau b thoi
Cho đường tròn (O). Các đường cao BE và CF của tam giác ABC cắt nhau tại H và cắt (O) lần lượt tại E' và F' (E' khác B và F' khác C).
a, Chứng minh tứ giác BCEF nội tiếp
b, Chứng minh EF//E'F'
c, Kẻ OI vuông góc với BC( I thuộc BC). Đường thẳng vuông góc với HI tại H cắt đường thẳng AB tại M và cắt đường thẳng AC tại N. Chứng minh tam giác IMN cân
Cho tam giác ABC có ba góc nhọn, đường cao BH. Kẻ HM vuông góc với
AB, HN vuông góc với BC. (M, N lần lượt thuộc đo AB , BC )
a) Chứng minh: BM.AB = BN.BC
b) Chứng minh: tam giác BNM đồng dạng với tam giác BAC
c) kẻ CI vuông góc với AB tại I, chứng minh góc AIH = góc ACB
d) Chứng minh MN đi qua trung điểm của HI